Finite topologies and their applications in linear algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using finite topologies defined on the algebra of linear operators, we investigate centralizers and double centralizers of locally algebraic linear operators. In particular, for an arbitrary locally algebraic operator A, we establish the conditions under which the equality CC(A)=C(A) is fulfilled, and in the case of an algebraically closed field, we describe minimal locally algebraic linear operators. Besides, we have studied automorphisms of dense in finite topology subrings of the rings of endomorphisms of free modules over projectively free rings.
Mots-clés : locally algebraic operator, discrete valuation ring, finite topology.
@article{IVM_2023_1_a5,
     author = {A. N. Abyzov and A. D. Maklakov},
     title = {Finite topologies and their applications in linear algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--96},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a5/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - A. D. Maklakov
TI  - Finite topologies and their applications in linear algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 87
EP  - 96
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a5/
LA  - ru
ID  - IVM_2023_1_a5
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A A. D. Maklakov
%T Finite topologies and their applications in linear algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 87-96
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a5/
%G ru
%F IVM_2023_1_a5
A. N. Abyzov; A. D. Maklakov. Finite topologies and their applications in linear algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 87-96. https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a5/

[1] Iovanov M.C., Mesyan Z., Reyes M.L., “Infinite-dimensional diagonalization and semisimplicity”, Israel J. Math., 215:2 (2016), 801–855 | DOI | MR

[2] Mesyan Z., “Infinite-Dimensional Triangularization”, J. Pure Appl. Algebra, 222:7 (2018), 1529–1547 | DOI | MR

[3] Jacobson N., Lectures in Abstract Algebra, v. II, Graduate Texts in Math., Linear Algebra, Springer-Verlag, Berlin-Heidelberg-New York, 1975 | MR

[4] Jacobson N., Structure of Rings, Amer. Math. Soc. Colloq. Publ., 37, 1956 | MR

[5] Bezushchak O.E., “Automorphisms and derivations of algebras of infinite matrices”, Linear Algebra Appl., 650:1 (2022), 42–59 | DOI | MR

[6] Courtemanche J., Dugas M., “Automorphisms of the endomorphism algebra of a free module”, Linear Algebra Appl., 510 (2016), 79–91 | DOI | MR

[7] Isaacs I.M., “Automorphisms of matrix algebras over commutative rings”, Linear Algebra Appl., 31 (1980), 215–231 | DOI | MR

[8] Krilov P.A., Tuganbaev A.A., Modules over Discrete Valuation Domains, De Gruyter, Berlin, 2018 | MR

[9] Warner S., Topological Rings, North-Holland Math. Studies, 178, Amsterdam, 1993 | MR

[10] Kostis A., Petrovis Z.Z., Pucanovis Z.S., Roslavcev M., “On a generalized Jordan form of an infinite upper triangular matrix”, Linear Multilinear Algebra, 69:8 (2021), 1534–1542 | DOI | MR

[11] Slowik R., “Corrigendum to Every infinite triangular matrix is similar to a generalized infinite Jordan matrix”, Linear Multilinear Algebra, 65 (2017), 1362–1373 | DOI | MR

[12] Guterman A.E., Dolinar G., Kuzma B., Oblak P., “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR

[13] Semrl P., “Non-linear commutativity preserving maps”, Acta Sci. Math. (Szeged), 71 (2005), 781–819 | MR

[14] Furstenberg H., “On the infinitude of primes”, Amer. Math. Monthly, 62:5 (1955), 353 | DOI | MR

[15] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975

[16] Kaplansky I., Commutative Rings, The Univ. of Chicago Press, Chicago, 1970 | MR