On a class of nonlinear integral equations of the Hammerstein--Volterra type on a semiaxis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 75-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we study a class of nonlinear integral equations with a monotone Hammerstein-Volterra type operator in the critical case. This class of equations occurs in the kinetic theory of gases in the framework of the study of the nonlinear kinetic integro-differential model Boltzmann equation. The combination of methods for constructing invariant cone segments for a nonlinear monotone operator with the methods of the theory of functions of a real variable makes it possible, with the help of specially chosen successive approximations, to construct a positive summable and bounded solution on a non-negative semiaxis for the above class of equations. With an additional constraint on nonlinearity, it is also possible to prove the uniqueness of the solution in a certain class of positive and summable functions on the non-negative semiaxis. At the end, illustrative examples of nonlinearity and the kernel are given, which are of both theoretical and applied interest.
Mots-clés : kernel, non-linearity, monotonicity, convergence, estimates, Caratheodory condition.
@article{IVM_2023_1_a4,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On a class of nonlinear integral equations of the {Hammerstein--Volterra} type on a semiaxis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--86},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a4/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On a class of nonlinear integral equations of the Hammerstein--Volterra type on a semiaxis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 75
EP  - 86
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a4/
LA  - ru
ID  - IVM_2023_1_a4
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On a class of nonlinear integral equations of the Hammerstein--Volterra type on a semiaxis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 75-86
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a4/
%G ru
%F IVM_2023_1_a4
Kh. A. Khachatryan; H. S. Petrosyan. On a class of nonlinear integral equations of the Hammerstein--Volterra type on a semiaxis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 75-86. https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a4/

[1] Cercignani C., The Boltzmann Equation and its Applications, Appl. Math. Sci., 67, Springer-Verlag, New York, 1988 | DOI | MR

[2] Kogan M.N., Dinamika razrezhennogo gaza. Kineticheskaya teoriya, Nauka, M., 1967

[3] Engibaryan N.B., Khachatryan A.Kh., “O tochnoi linearizatsii zadach skolzheniya razrezhennogo gaza v modeli Bkhatnagara–Grossa–Kruka”, Teoret. i matem. fiz., 125:2 (2000), 339–342 | MR

[4] Khachatryan Kh.A., “Otsenka resheniya odnogo integralnogo uravneniya tipa Volterra”, Uchen. zap. Erevansk. gos. un-ta. Ser. Fiz. i matem. nauki, 2003, no. 1, 21–26

[5] Khachatryan A.Kh., Khachatryan Kh.A., “Ob odnom nelineinom integralnom uravnenii tipa uravneniya Gammershteina c nekompaktnym operatorom”, Matem. sb., 201:4 (2010), 125–136

[6] Khachatryan Kh.A., Grigoryan S.A., “O netrivialnoi razreshimosti odnogo nelineinogo integralnogo uravneniya tipa Gammershteina–Volterra”, Vladikavkazsk. matem. zhurn., 14:2 (2012), 57–66 | MR

[7] Sidorov D.N., “Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations”, Diff. Equat., 50:9 (2014), 1217–1224 | DOI | MR

[8] Sidorov D.N., Sidorov N.A., “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10 | DOI | MR

[9] Sidorov N.A., Sidorov D.N., “Solving the Hammerstein integral equation in the irregular case by successive approximations”, Siberian Math. J., 51:2 (2010), 325–329 | DOI | MR

[10] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR