On the problem of choice of methods for stabilizing systems containing linear delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 36-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of stabilization of systems of linear differential equations containing a delay linearly dependent on the argument (time) is considered. Methods of stabilization of some systems with constant coefficients are proposed. Due to the fact that the delay increases indefinitely, stabilization is considered over an infinite time interval. The numerical examples illustrating the effectiveness of stabilization methods are presented.
Mots-clés : time-delay, controllable system, stability, stabilization.
@article{IVM_2023_1_a2,
     author = {B. G. Grebenshchikov and A. B. Lozhnikov},
     title = {On the problem of choice of methods for stabilizing systems containing linear delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--50},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a2/}
}
TY  - JOUR
AU  - B. G. Grebenshchikov
AU  - A. B. Lozhnikov
TI  - On the problem of choice of methods for stabilizing systems containing linear delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 36
EP  - 50
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a2/
LA  - ru
ID  - IVM_2023_1_a2
ER  - 
%0 Journal Article
%A B. G. Grebenshchikov
%A A. B. Lozhnikov
%T On the problem of choice of methods for stabilizing systems containing linear delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 36-50
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a2/
%G ru
%F IVM_2023_1_a2
B. G. Grebenshchikov; A. B. Lozhnikov. On the problem of choice of methods for stabilizing systems containing linear delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 36-50. https://geodesic-test.mathdoc.fr/item/IVM_2023_1_a2/

[1] Grebenschikov B.G., Rozhkov V.I., “Asimptoticheskoe povedenie resheniya odnoi statsionarnoi sistemy s zapazdyvaniem”, Differents. uravneniya, 29:5 (1993), 751–758 | MR

[2] Rozhkov V.I., Popov A.M., “Otsenki reshenii nekotorykh sistem differentsialnykh uravnenii s bolshim zapazdyvaniem”, Differents. uravneniya, 7:2 (1971), 271–278 | MR

[3] Carr J., Dyson J., “The matrix functional-differential equation $y'(x)=Ay(x)+By(\lambda x)$”, Proc. Roy. Soc. of Edinburgh Sect. A, 74 (1976), 165–174 | DOI | MR

[4] Malygina V.V., “Ob asimptoticheskom povedenii resheniya odnogo uravneniya s zapazdyvaniem”, Vestn. Permsk. gos. tekhn. un-ta. Prikl. matem. i mekhan., 3 (1996), 26–29

[5] Ockendon J.R, Tayler A., “The dynamics of a current collection system for an electric locomotive”, Proc. Roy. Soc. London Ser. A, 322 (1971), 447–468 | DOI

[6] Grebenschikov B.G., “Postroenie pochti periodicheskikh reshenii dlya odnoi sistemy s lineinym zapazdyvaniem”, Sib. matem. zhurn., 57:5 (2016), 1012–1020 | MR

[7] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[8] Furasov V.D., Ustoichivost dvizheniya, otsenki stabilizatsii, Nauka, M., 1977 | MR

[9] Zubov V.I., Lektsii po teorii upravleniya, Nauka, M., 1975

[10] Grebenschikov B.G., O stabilizatsii statsionarnykh lineinykh sistem s zapazdyvaniem, lineino zavisyaschim ot vremeni, Dep. v VINITI No 4384-92, Izv. vuzov. Matem., 1991

[11] Furasov V.D., Ustoichivost i stabilizatsiya diskretnykh protsessov, Nauka, M., 1982 | MR

[12] Grebenschikov B.G., “Ob ustoichivosti statsionarnykh sistem lineinykh differentsialnykh uravnenii neitralnogo tipa s zapazdyvaniem, lineino zavisyaschim ot vremeni”, Izv. vuzov. Matem., 1991, no. 7, 69–71

[13] Zhabko A.P., Tikhomirov O.G., Chizhova O.N., “O stabilizatsii klassa sistem s proportsionalnym zapazdyvaniem”, Vestn. Sankt-Peterburgs. un-ta. Prikl. matem. Informatika. Prots. uprav., 14:2 (2018), 165–172 | MR

[14] Elsgolts L.E., Norkin S.B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[15] Grebenschikov B.G., Lozhnikov A.B., “Metody stabilizatsii sistem s dvumya lineinymi zapazdyvaniyami”, Izv. vuzov. Matem., 2011, no. 9, 19–29

[16] Grebenschikov B.G., Lozhnikov A.B., “Stabilizatsiya sistemy neitralnogo tipa s dvumya lineinymi zapazdyvaniyami”, Mater. IV mezhdunarodn. konf. “Matematika, ee prilozheniya i matematicheskoe obrazovanie”, v. 1, Ulan-Ude, 2011, 32–35

[17] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[18] Markushin E.M., Optimalnye sistemy avtomaticheskogo regulirovaniya s zapazdyvaniem po vremeni, Izd-vo Saratovsk. un-ta, 1971

[19] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[20] Grebenschikov B.G., “Ob ustoichivosti po pervomu priblizheniyu odnoi nestatsionarnoi sistemy s zapazdyvaniem”, Izv. vuzov. Matem., 2012, no. 2, 34–42

[21] Kharitonov V.L., “An extension of the prediction scheme to the case of systems with both input and state delay”, Automatica, 50 (2014), 211–217 | DOI | MR

[22] Bin Zhon, Qingsong Liu, Frederic Mazenc, “Stabilization of linear systems with both input and state delays by observer-predictors”, Automatica, 83 (2017), 368–377 | DOI | MR

[23] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971