Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_8_a8, author = {M. M. Yamaleev}, title = {Isolation from side in $2$-computably enumerable degrees}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {81--86}, publisher = {mathdoc}, number = {8}, year = {2020}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2020_8_a8/} }
M. M. Yamaleev. Isolation from side in $2$-computably enumerable degrees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 81-86. https://geodesic-test.mathdoc.fr/item/IVM_2020_8_a8/
[1] Cooper B., Yi X., Isolated d.r.e. degrees, Preprint ser. 17, Univ. Leeds, Dept of Pure Math., Leeds, 1995 | Zbl
[2] Sacks G. E., “The recursively enumerable degrees are dense”, Ann. Math., 80:2 (1964), 300–312 | DOI | MR | Zbl
[3] Wu G., “Isolation and lattice embedding”, J. Symb. Logic, 67 (2002), 1055–1064 | DOI | MR | Zbl
[4] Ding D., Qian L., “Isolated d.r.e. degrees are dense in r.e. degree structure”, Arch. Math. Logic, 36:1 (1996), 1–10 | MR | Zbl
[5] LaForte G., “The isolated d.r.e. degrees are dense in the r.e. degrees”, Math. Logic Quart., 42 (1996), 83–103 | DOI | MR | Zbl
[6] Arslanov M. M., Lempp S., Shore R. A., “On isolating r.e. and isolated d-r.e. degrees”, Computability, enumerability, unsolvability, London Math. Society, Lect. Note Ser., 224, 1996, 61–80 | MR | Zbl
[7] Cooper B., Li A., “Turing Definability in the Ershov Hierarchy”, J. London Math. Society, 66:3 (2002), 513–538 | DOI | MR
[8] Arslanov M. M., “Definability and Elementary Equivalence in the Ershov Difference Hierarchy”, Lect. Notes in Logic, 32 (2009), 1–17 | MR | Zbl
[9] Arslanov M. M., Yamaleev M. M., “On the problem of definability of the computably enumerable degrees in the difference hierarchy”, Lobachevskii J. Math., 39:5 (2018), 634–638 | DOI | MR | Zbl
[10] Yang Y., Yu L., “On $\Sigma_1$-structural differences among Ershov hierarchies”, J. Symb. Logic, 71 (2006), 1223–1236 | MR | Zbl
[11] Cai M., Shore R. A., Slaman T. A., “The $n$-r.e. degrees: undecidability and $\Sigma_1$ substructures”, J. Math. Logic, 12 (2012), 1–30 | DOI | MR | Zbl
[12] Wu G., Yamaleev M. M., “Isolation: motivations and applications”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauk, 154, no. 2, 2012, 204–217 | MR
[13] Soar R. I., Vychislimo-perechislimye mnozhestva i stepeni, Kazansk. matem. o-vo, Kazan, 2000
[14] Robinson R. W., “Interpolation and embedding in the recursively enumerable degrees”, Ann. Math., 93:2 (1971), 285–314 | MR | Zbl