A problem for a factorized equation with a pseudoparabolic differential operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new problem is proposed for a fourth-order factorized differential equation whose operator is the product of a first- and third-order differential operator. The existence and uniqueness of the solution of the problem are proved. The solution is constructed in terms of the Riemann function of the corresponding pseudoparabolic differential operator of the third order, and one of the functions included in the formula for solving the problem is determined in the resolvents of two integral equations.
Mots-clés : factorized equation, pseudoparabolic equation, equation with leading partial derivative, Riemann method, Goursat problem, Volterra equation.
@article{IVM_2020_8_a4,
     author = {L. B. Mironova},
     title = {A problem for a factorized equation with a pseudoparabolic differential operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--49},
     publisher = {mathdoc},
     number = {8},
     year = {2020},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2020_8_a4/}
}
TY  - JOUR
AU  - L. B. Mironova
TI  - A problem for a factorized equation with a pseudoparabolic differential operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 44
EP  - 49
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2020_8_a4/
LA  - ru
ID  - IVM_2020_8_a4
ER  - 
%0 Journal Article
%A L. B. Mironova
%T A problem for a factorized equation with a pseudoparabolic differential operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 44-49
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2020_8_a4/
%G ru
%F IVM_2020_8_a4
L. B. Mironova. A problem for a factorized equation with a pseudoparabolic differential operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 44-49. https://geodesic-test.mathdoc.fr/item/IVM_2020_8_a4/

[1] Dzhuraev T. D., “Ob uravneniyakh smeshanno-sostavnogo tipa”, Izv. AN Uzbekskoi SSR. Ser. fiz.-matem. nauki, 1961, no. 6, 3–14 | Zbl

[2] Dzhuraev T. D., “O nekotorykh kraevykh zadachakh dlya uravnenii smeshanno-sostavnogo tipa”, Sib. matem. zhurn., 4:4 (1963), 775–787 | MR | Zbl

[3] Elubaev S. E., “Ob odnoi kraevoi zadache dlya uravneniya giperbolicheskogo tipa”, Sib. matem. zhurn., 2:4 (1961), 510–519 | MR | Zbl

[4] Elubaev S. E., “Ob odnoi kraevoi zadache dlya giperbolicheskogo uravneniya tretego poryadka s dvumya nezavisimymi peremennymi”, Vestn. AN Kazakhsk. SSR, 1962, no. 6, 54–62 | Zbl

[5] Ni Xingtang, “Boundary value problem with three characteristic supports for linear totally hiperbolic equation of the third order”, Kexue tongbao, 25:5 (1980), 361–369 | MR | Zbl

[6] Zhegalov V. I., Mironov A. N., Utkina E. A., Uravneniya s dominiruyuschei chastnoi proizvodnoi, Izd-vo Kazansk. un-ta, Kazan, 2014

[7] Dzhuraev T. D., Popëlek Ya., “O kanonicheskikh vidakh uravnenii s chastnymi proizvodnymi tretego poryadka”, UMN, 44:4 (1989), 237–238 | MR | Zbl

[8] Zhegalov V. I., Mironov A. N., “K prostranstvennym granichnym zadacham dlya giperbolicheskikh uravnenii”, Differents. uravneniya, 46:3 (2010), 364–371 | MR | Zbl

[9] Mironov A. N., “Primenenie metoda Rimana k faktorizovannomu uravneniyu v $n$-mernom prostranstve”, Izv. vuzov. Matem., 2012, no. 1, 54–60 | Zbl

[10] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya”, Differents. uravneniya, 18:2 (1982), 280–285 | MR | Zbl

[11] Dzhokhadze O. M., “Vliyanie mladshikh chlenov na korrektnost postanovki kharakteristicheskikh zadach dlya giperbolicheskikh uravnenii tretego poryadka”, Matem. zametki, 74:4 (2003), 517–528 | MR | Zbl

[12] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matem., 1999, no. 10, 73–76 | Zbl

[13] Zhegalov V. I., Mironov A. N., “O zadachakh Koshi dlya dvukh uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matem., 2002, no. 5, 23–30 | Zbl

[14] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. uravneniya, 40:6 (2004), 763–774 | MR | Zbl

[15] Mironov A. N., Mironova L. B., “Ob invariantakh Laplasa dlya uravneniya s dominiruyuschei chastnoi proizvodnoi tretego poryadka s dvumya nezavisimymi peremennymi”, Matem. zametki, 99:1 (2016), 89–96 | MR | Zbl

[16] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[17] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, DAN SSSR, 297:3 (1987), 547–552

[18] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, PMM, 24:5 (1960), 58–73

[19] Hallaire M., “Le potential efficace de l'eau dans le sol an regime de dessechement”, L'eau et production vegetale, 9, Institut National de la Recherche Agronomique, Paris, 1964, 27–62