The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 62-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove the existence of weak solutions for the initial-boundary value problem describing the motion of weakly concentrated aqueous solutions of polymers. The proof is based on the approximation-topological approach. At the first step we prove the operator equation which is equivalent to the weak formulation of the considered problem is approximated by another operator equation with good properties and the solvability of this equation. At the second step, the passage to the limit is made, i. e., it is shown that from a sequence of solutions one can extract a subsequence that converges weakly to the solution of the original problem as the parameter of approximation tends to zero.
Mots-clés : initial-boundary value problem, model of aqueous solutions of polymers, weak solution, approximation-topological approach, operator equation, a priori estimate, Leray–Schauder degree theory.
@article{IVM_2019_8_a5,
     author = {M. V. Turbin and A. S. Ustiuzhaninova},
     title = {The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--78},
     publisher = {mathdoc},
     number = {8},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a5/}
}
TY  - JOUR
AU  - M. V. Turbin
AU  - A. S. Ustiuzhaninova
TI  - The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 62
EP  - 78
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a5/
LA  - ru
ID  - IVM_2019_8_a5
ER  - 
%0 Journal Article
%A M. V. Turbin
%A A. S. Ustiuzhaninova
%T The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 62-78
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a5/
%G ru
%F IVM_2019_8_a5
M. V. Turbin; A. S. Ustiuzhaninova. The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 62-78. https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a5/

[1] Pavlovskii V. A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, DAN SSSR, 200:4 (1971), 809–812

[2] Amfilokhiev V. B., Voitkunskii Ya. I., Mazaeva N. P., Khodorkovskii Ya. S., “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Tr. Leningradsk. korablestroitelnogo in-ta, 96 (1975), 3–9

[3] Amfilokhiev V. B., Pavlovskii V. A., “Eksperimentalnye dannye o laminarno-turbulentnom perekhode pri techenii polimernykh rastvorov v trubakh”, Tr. Leningradsk. korablestroitelnogo in-ta, 104 (1976), 3–5

[4] Noll W., Truesdell C., “The nonlinear field theories of mechanics”, Handbuch der Physik, ed. Flugge S., Springer, Berlin, 1965 | MR

[5] Rivlin R. S., Ericksen J. L., “Stress-deformation relations for isotropic materials”, J. Rational Mechan. and Anal., 4 (1955), 323–425 | MR | Zbl

[6] Oskolkov A. P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Zap. nauchn. sem. LOMI, 38, 1973, 98–136 | Zbl

[7] Oskolkov A. P., “O razreshimosti v tselom pervoi kraevoi zadachi dlya odnoi kvazilineinoi sistemy $3$-go poryadka, vstrechayuscheisya pri izuchenii dvizheniya vyazkoi zhidkosti”, Zap. nauchn. sem. LOMI, 27, 1972, 145–160 | Zbl

[8] Oskolkov A. P., “O nekotorykh kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauchn. sem. LOMI, 52, 1975, 128–157 | Zbl

[9] Ladyzhenskaya O. A., “O pogreshnostyakh v dvukh moikh publikatsiyakh po uravneniyam Nave–Stoksa i ikh ispravleniyakh”, Zap. nauchn. sem. POMI, 271, 2000, 151–155 | Zbl

[10] Zvyagin V. G., Turbin M. V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND (URSS), M., 2012

[11] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki, Editorial URSS, M., 2004

[12] Zvyagin V. G., Vorotnikov D. A., Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, Walter de Gruyter, Berlin–New York, 2008 | MR

[13] Zvyagin A. V., “O razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Matem., 2011, no. 2, 103–105 | MR | Zbl

[14] Zvyagin A. V., Zvyagin V. G., Polyakov D. M., “O razreshimosti odnoi alfa-modeli dvizheniya zhidkosti s pamyatyu”, Izv. vuzov. Matem., 2018, no. 6, 78–84 | Zbl

[15] Temam R., Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981

[16] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961

[17] Solonnikov V. A., “Otsenki tenzorov Grina dlya nekotorykh granichnykh zadach”, DAN SSSR, 130:5 (1960), 988–991 | MR | Zbl

[18] Vorovich I. I., Yudovich V. I., “Statsionarnye techeniya vyazkoi neszhimaemoi zhidkosti”, Matem. sb., 53:4 (1961), 393–428

[19] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[20] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[21] Simon J., “Compact sets in the space $L^p(0,T; B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR | Zbl