Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_8_a3, author = {A. K. Svinin and S. V. Svinina}, title = {On some generalizations of sum of powers of natural numbers}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {31--44}, publisher = {mathdoc}, number = {8}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a3/} }
A. K. Svinin; S. V. Svinina. On some generalizations of sum of powers of natural numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 31-44. https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a3/
[1] Grekhem Z., Knut D., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998 | MR
[2] Knuth D. E., “Johann Faulhaber and the sums of powers”, Math. Comp., 61:203 (1993), 277–294 | DOI | MR | Zbl
[3] Jacobi C. G., “De usu legitimoformulae summatoriae Maclaurinaianae”, J. Reine Angew. Math., 12 (1834), 263–272 | MR | Zbl
[4] Svinin A. K., “Conjectures involving a generalization of the sums of powers of integers”, Exp. Math., 27:4 (2018), 437–443 | DOI | MR | Zbl
[5] Strazdins I., “Solution to problem B-871”, Fibonacci Quart., 38.1 (2000), 86–87
[6] Tuenter H. J. H., “Walking into an absolute sum”, Fibonacci Quart., 40 (2006), 175–180 | MR
[7] De Moivre A., The doctrine of chances: or, a method of calculating the probabilities of events in play, Chelsea Publ. Company, N. Y., 1756 | MR
[8] Euler L., “De evolutione potestatis polynomialis cuiuscunque $\left(1+x+x^2+\dotsb\right)^n$”, Nova Acta Academiae Sci. Imperialis Petropolitinae, 12 (1801), 47–57
[9] Montel P., “Sur les combinaisons avec répétitions limitées”, Bull. Sci. Math., 66 (1942), 86–103 | MR
[10] Tremblay A., “Generalization of Pascal's arithmetical triangle”, National Math. Magazine, 11 (1937), 255–258 | DOI | MR | Zbl
[11] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR
[12] Agoh T., Dilcher K., “Shortened recurrence relations for Bernoulli numbers”, Disc. Math., 309:4 (2009), 887–898 | DOI | MR | Zbl
[13] Nörlund N. E., Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924 | Zbl
[14] Carlitz L., “Some theorems on Bernoulli numbers of higher order”, Pacific J. Math., 2:2 (1952), 127–139 | DOI | MR | Zbl
[15] Gessel I., Stanley R. P., “Stirling polynomials”, J. Comb. Theor., Ser. A, 24:1 (1978), 24–33 | DOI | MR | Zbl
[16] Jordan K., Calculus of finite differences, Chelsea Publ. Company, N. Y., 1965 | MR | Zbl
[17] Adelberg A., “A finite difference approach to degenerate Bernoulli and Stirling polynomials”, Disc. Math., 140:1–3 (1995), 1–21 | DOI | MR | Zbl
[18] Gessel I. M., “On Miki's identity for Bernoulli numbers”, J. Number Theory, 110:1 (2005), 75–82 | DOI | MR | Zbl
[19] Kimura N., Siebert H., “Über die rationalen Nullstellen der von Potenzsummen der natürlichen Zahlen definierten Polynome”, Proc. Japan Acad., Ser. A, Math. Sci., 56:7 (1980), 354–356 | DOI | MR | Zbl
[20] Svinin A. K., “O nepreryvnom predele integriruemoi ierarkhii tsepochki Bogoyavlenskogo”, Mater. konf. “Lyapunovskie chteniya” (g. Irkutsk, 5–7 dekabrya g.), 2017, 46
[21] Gandhi J. M., “Research problems: a conjectured representation of Genocchi numbers”, Amer. Math. Monthly, 77:5 (1970), 505–506 | DOI | MR | Zbl
[22] Carlitz L., “A conjecture concerning Genocchi numbers”, Norske Vidensk. Selsk. Sk., 9 (1971), 1–4 | MR
[23] Riordan J., Stein P. R., “Proof of a conjecture on Genocchi numbers”, Disc. Math., 5:4 (1973), 381–388 | DOI | MR | Zbl
[24] Carlitz L., “Explicit formulas for the Dumont–Foata polynomial”, Disc. Math., 30:3 (1980), 211–225 | DOI | MR | Zbl
[25] Dumont D., Foata D., “Une propriété de symétrie des nombres de Genocchi”, Bull. Soc. Math. France, 104 (1976), 433–451 | DOI | MR | Zbl