On some generalizations of sum of powers of natural numbers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 31-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider some generalizations of the sum of powers of natural numbers. In particular, we study the class of sums whose generating function is the power of the generating function for the classical sums of powers. We also consider the so-called binomial sums and solve the problem of constructing polynomials that allow to calculate the values of the corresponding sums in certain cases.
Mots-clés : sums of powers of natural numbers, Bernoulli numbers, Genocchi numbers, Gandhi polynomials.
@article{IVM_2019_8_a3,
     author = {A. K. Svinin and S. V. Svinina},
     title = {On some generalizations of sum of powers of natural numbers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--44},
     publisher = {mathdoc},
     number = {8},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a3/}
}
TY  - JOUR
AU  - A. K. Svinin
AU  - S. V. Svinina
TI  - On some generalizations of sum of powers of natural numbers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 31
EP  - 44
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a3/
LA  - ru
ID  - IVM_2019_8_a3
ER  - 
%0 Journal Article
%A A. K. Svinin
%A S. V. Svinina
%T On some generalizations of sum of powers of natural numbers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 31-44
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a3/
%G ru
%F IVM_2019_8_a3
A. K. Svinin; S. V. Svinina. On some generalizations of sum of powers of natural numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 31-44. https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a3/

[1] Grekhem Z., Knut D., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998 | MR

[2] Knuth D. E., “Johann Faulhaber and the sums of powers”, Math. Comp., 61:203 (1993), 277–294 | DOI | MR | Zbl

[3] Jacobi C. G., “De usu legitimoformulae summatoriae Maclaurinaianae”, J. Reine Angew. Math., 12 (1834), 263–272 | MR | Zbl

[4] Svinin A. K., “Conjectures involving a generalization of the sums of powers of integers”, Exp. Math., 27:4 (2018), 437–443 | DOI | MR | Zbl

[5] Strazdins I., “Solution to problem B-871”, Fibonacci Quart., 38.1 (2000), 86–87

[6] Tuenter H. J. H., “Walking into an absolute sum”, Fibonacci Quart., 40 (2006), 175–180 | MR

[7] De Moivre A., The doctrine of chances: or, a method of calculating the probabilities of events in play, Chelsea Publ. Company, N. Y., 1756 | MR

[8] Euler L., “De evolutione potestatis polynomialis cuiuscunque $\left(1+x+x^2+\dotsb\right)^n$”, Nova Acta Academiae Sci. Imperialis Petropolitinae, 12 (1801), 47–57

[9] Montel P., “Sur les combinaisons avec répétitions limitées”, Bull. Sci. Math., 66 (1942), 86–103 | MR

[10] Tremblay A., “Generalization of Pascal's arithmetical triangle”, National Math. Magazine, 11 (1937), 255–258 | DOI | MR | Zbl

[11] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR

[12] Agoh T., Dilcher K., “Shortened recurrence relations for Bernoulli numbers”, Disc. Math., 309:4 (2009), 887–898 | DOI | MR | Zbl

[13] Nörlund N. E., Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924 | Zbl

[14] Carlitz L., “Some theorems on Bernoulli numbers of higher order”, Pacific J. Math., 2:2 (1952), 127–139 | DOI | MR | Zbl

[15] Gessel I., Stanley R. P., “Stirling polynomials”, J. Comb. Theor., Ser. A, 24:1 (1978), 24–33 | DOI | MR | Zbl

[16] Jordan K., Calculus of finite differences, Chelsea Publ. Company, N. Y., 1965 | MR | Zbl

[17] Adelberg A., “A finite difference approach to degenerate Bernoulli and Stirling polynomials”, Disc. Math., 140:1–3 (1995), 1–21 | DOI | MR | Zbl

[18] Gessel I. M., “On Miki's identity for Bernoulli numbers”, J. Number Theory, 110:1 (2005), 75–82 | DOI | MR | Zbl

[19] Kimura N., Siebert H., “Über die rationalen Nullstellen der von Potenzsummen der natürlichen Zahlen definierten Polynome”, Proc. Japan Acad., Ser. A, Math. Sci., 56:7 (1980), 354–356 | DOI | MR | Zbl

[20] Svinin A. K., “O nepreryvnom predele integriruemoi ierarkhii tsepochki Bogoyavlenskogo”, Mater. konf. “Lyapunovskie chteniya” (g. Irkutsk, 5–7 dekabrya g.), 2017, 46

[21] Gandhi J. M., “Research problems: a conjectured representation of Genocchi numbers”, Amer. Math. Monthly, 77:5 (1970), 505–506 | DOI | MR | Zbl

[22] Carlitz L., “A conjecture concerning Genocchi numbers”, Norske Vidensk. Selsk. Sk., 9 (1971), 1–4 | MR

[23] Riordan J., Stein P. R., “Proof of a conjecture on Genocchi numbers”, Disc. Math., 5:4 (1973), 381–388 | DOI | MR | Zbl

[24] Carlitz L., “Explicit formulas for the Dumont–Foata polynomial”, Disc. Math., 30:3 (1980), 211–225 | DOI | MR | Zbl

[25] Dumont D., Foata D., “Une propriété de symétrie des nombres de Genocchi”, Bull. Soc. Math. France, 104 (1976), 433–451 | DOI | MR | Zbl