Higher Lyapunov functions derivatives and total Poisson boundedness of solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of higher Lyapunov derivatives we obtain sufficient conditions for total Poisson boundedness of solutions, partial total Poisson boundedness of solutions, and partial total Poisson boundedness of solutions with partially controlled initial conditions.
Mots-clés : higher-order derivatives, Lyapunov function, total boundedness of solutions, Poisson boundedness of solutions, partially controlled initial conditions.
@article{IVM_2019_8_a2,
     author = {K. S. Lapin},
     title = {Higher {Lyapunov} functions derivatives and total {Poisson} boundedness of solutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--30},
     publisher = {mathdoc},
     number = {8},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a2/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Higher Lyapunov functions derivatives and total Poisson boundedness of solutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 21
EP  - 30
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a2/
LA  - ru
ID  - IVM_2019_8_a2
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Higher Lyapunov functions derivatives and total Poisson boundedness of solutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 21-30
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a2/
%G ru
%F IVM_2019_8_a2
K. S. Lapin. Higher Lyapunov functions derivatives and total Poisson boundedness of solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 21-30. https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a2/

[1] Yoshizawa T., “Liapunovs function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl

[2] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR

[3] Lapin K. S., “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | Zbl

[4] Lapin K. S., “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | DOI | Zbl

[5] Lapin K. S., “Ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 96:3 (2014), 393–404 | DOI

[6] Lapin K. S., “Vektor-funktsii Lyapunova i chastichnaya ogranichennost reshenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 52:5 (2016), 572–578 | DOI | Zbl

[7] Lapin K. S., “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 99:2 (2016), 239–247 | DOI | Zbl

[8] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i chastichnaya ogranichennost reshenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 101:6 (2017), 883–893 | DOI | Zbl

[9] Vorotnikov V. I., “Ob ustoichivosti i ustoichivosti po chasti peremennykh chastichnykh polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337

[10] Vorotnikov V. I., “Chastichnaya ustoichivost i upravlenie: sostoyanie problemy i perspektivy razvitiya”, Avtomatika i telemekhanika, 2005, no. 4, 3–59 | Zbl

[11] Vorotnikov V. I., Martyshenko Yu. G., “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | Zbl

[12] Vorotnikov V. I., Martyshenko Yu. G., “K zadacham chastichnoi ustoichivosti dlya sistem s posledeistviem”, Tr. In-ta matem. i mekhan. UrO RAN, 19, no. 1, 2013, 49–58

[13] Vorotnikov V. I., Martyshenko Yu. G., “Ob ustoichivosti po chasti peremennykh «chastichnykh» polozhenii ravnovesiya sistem s posledeistviem”, Matem. zametki, 96:4 (2014), 496–503 | DOI | Zbl

[14] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | DOI | Zbl

[15] Lapin K. S., “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | DOI | Zbl

[16] Abdullin R. Z., Anapolskii L. Yu., Voronov A. A., Zemlyakov A. S., Kozlov R. I., Malikov A. I., Matrosov V. M., Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, Nauka, M., 1987 | MR

[17] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[18] Miki K., Masamichi A., Shoichi S., “On the partial total stability and partially total boundedness of a system of ordinary differential equations”, Res. Rept. Akita Tech. Coll., 20 (1985), 105–109