Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_8_a2, author = {K. S. Lapin}, title = {Higher {Lyapunov} functions derivatives and total {Poisson} boundedness of solutions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {21--30}, publisher = {mathdoc}, number = {8}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a2/} }
K. S. Lapin. Higher Lyapunov functions derivatives and total Poisson boundedness of solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 21-30. https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a2/
[1] Yoshizawa T., “Liapunovs function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl
[2] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR
[3] Lapin K. S., “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | Zbl
[4] Lapin K. S., “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | DOI | Zbl
[5] Lapin K. S., “Ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 96:3 (2014), 393–404 | DOI
[6] Lapin K. S., “Vektor-funktsii Lyapunova i chastichnaya ogranichennost reshenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 52:5 (2016), 572–578 | DOI | Zbl
[7] Lapin K. S., “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 99:2 (2016), 239–247 | DOI | Zbl
[8] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i chastichnaya ogranichennost reshenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 101:6 (2017), 883–893 | DOI | Zbl
[9] Vorotnikov V. I., “Ob ustoichivosti i ustoichivosti po chasti peremennykh chastichnykh polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337
[10] Vorotnikov V. I., “Chastichnaya ustoichivost i upravlenie: sostoyanie problemy i perspektivy razvitiya”, Avtomatika i telemekhanika, 2005, no. 4, 3–59 | Zbl
[11] Vorotnikov V. I., Martyshenko Yu. G., “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | Zbl
[12] Vorotnikov V. I., Martyshenko Yu. G., “K zadacham chastichnoi ustoichivosti dlya sistem s posledeistviem”, Tr. In-ta matem. i mekhan. UrO RAN, 19, no. 1, 2013, 49–58
[13] Vorotnikov V. I., Martyshenko Yu. G., “Ob ustoichivosti po chasti peremennykh «chastichnykh» polozhenii ravnovesiya sistem s posledeistviem”, Matem. zametki, 96:4 (2014), 496–503 | DOI | Zbl
[14] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | DOI | Zbl
[15] Lapin K. S., “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | DOI | Zbl
[16] Abdullin R. Z., Anapolskii L. Yu., Voronov A. A., Zemlyakov A. S., Kozlov R. I., Malikov A. I., Matrosov V. M., Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, Nauka, M., 1987 | MR
[17] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001
[18] Miki K., Masamichi A., Shoichi S., “On the partial total stability and partially total boundedness of a system of ordinary differential equations”, Res. Rept. Akita Tech. Coll., 20 (1985), 105–109