A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lomov regularization method is generalized on weakly nonlinear singularly perturbed problems in the case of intersection of the roots of the characteristic equation of the limit operator. To construct asymptotic solutions, we use the idea of initial problems with the use of normal forms, first realized in nonlinear systems by Safonov V.F. and Bobodzhanov A.A.
Mots-clés : singularly perturbed, normal form, regularization, asymptotic convergence.
@article{IVM_2019_8_a0,
     author = {V. S. Abramov and A. A. Bobodzhanov and M. A. Bobodzhanova},
     title = {A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {8},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a0/}
}
TY  - JOUR
AU  - V. S. Abramov
AU  - A. A. Bobodzhanov
AU  - M. A. Bobodzhanova
TI  - A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 12
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a0/
LA  - ru
ID  - IVM_2019_8_a0
ER  - 
%0 Journal Article
%A V. S. Abramov
%A A. A. Bobodzhanov
%A M. A. Bobodzhanova
%T A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-12
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a0/
%G ru
%F IVM_2019_8_a0
V. S. Abramov; A. A. Bobodzhanov; M. A. Bobodzhanova. A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 3-12. https://geodesic-test.mathdoc.fr/item/IVM_2019_8_a0/

[1] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981

[2] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Moskovsk. un-ta, M., 2011

[3] Safonov V. F., Bobodzhanov A. A., Metod normalnykh form dlya nelineinykh rezonansnykh singulyarno vozmuschennykh zadach, Izd-vo “Sputnik+”, M., 2016

[4] Eliseev A. G., “Teoriya singulyarnykh vomuschenii v sluchae “slaboi” tochki povorota u predelnogo operatora”, Vestn. MEI, 1997, no. 6, 31–41

[5] Eliseev A. G., Lomov S. A., “Teoriya singulyarnykh vozmuschenii v sluchae singulyarnykh osobennostei predelnogo operatora”, Matem. sb., 131:4 (1986), 544–557 | Zbl

[6] Safonov V. F., Bobodzhanov A. A., Kurs vysshei matematiki. Singulyarno vozmuschennye zadachi i metod regulyarizatsii, uchebnoe posobie, Izd. dom MEI, M., 2012

[7] Bobodzhanov A. A., Safonov V. F., “Asimptotika reshenii nelineinykh singulyarno vozmuschennykh sistem v kriticheskom sluchae”, Vestn. MEI, 1997, no. 6, 10–17

[8] Safonov V. F., “Regulyarizovannye asimptoticheskie resheniya singulyarno vozmuschennykh zadach v kriticheskom sluchae”, Izv. vuzov. Matem., 384:5 (1994), 41–48 | Zbl