On an initial-boundary value problem for a semilinear differential-algebraic system of partial differential equations of index~(1,0)
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mixed problem for some semilinear differential-algebraic system of partial differential equations of index (1,0) of the first order with a two-dimensional rectangular domain of definition. Using the method of characteristics and the method of successive approximations, the theorem of the existence and uniqueness of the classical solution of a mixed problem in the entire domain of definition is proved. It is shown that the solution and its first derivatives remain bounded in this region.
Mots-clés : differential-algebraic system, index of system, matrix pencil, method of characteristics.
@article{IVM_2019_5_a6,
     author = {S. V. Svinina and A. K. Svinin},
     title = {On an initial-boundary value problem for a semilinear differential-algebraic system of partial differential equations of index~$(1,0)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--82},
     publisher = {mathdoc},
     number = {5},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a6/}
}
TY  - JOUR
AU  - S. V. Svinina
AU  - A. K. Svinin
TI  - On an initial-boundary value problem for a semilinear differential-algebraic system of partial differential equations of index~$(1,0)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 70
EP  - 82
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a6/
LA  - ru
ID  - IVM_2019_5_a6
ER  - 
%0 Journal Article
%A S. V. Svinina
%A A. K. Svinin
%T On an initial-boundary value problem for a semilinear differential-algebraic system of partial differential equations of index~$(1,0)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 70-82
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a6/
%G ru
%F IVM_2019_5_a6
S. V. Svinina; A. K. Svinin. On an initial-boundary value problem for a semilinear differential-algebraic system of partial differential equations of index~$(1,0)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 70-82. https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a6/

[1] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[2] Demidenko G. A., Uspenskii S. V., Uravneniya i sistemy ne razreshennye otnositelno starshei proizvodnoi, Nauchn. kn., Novosibirsk, 1998

[3] Ruschinskii V. M., “Prostranstvennye lineinye i nelineinye modeli kotlogeneratorov”, Vopr. identifikatsii i modelir., 1968, 8–15

[4] Selva Soto M., Tischendorf C., “Numerical analysis of DAEs from coupled circuit and semiconductor simulation”, Appl. Numer. Math., 53:2–4 (2005), 471–488 | DOI | MR | Zbl

[5] Lucht W., “Partial differential-algebraic systems of second order with symmetric convection”, Appl. Numer. Math., 53:2–4 (2005), 357–371 | DOI | MR | Zbl

[6] Kurant P., Gilbert D., Metody matematicheskoi fiziki, v. 2, GTTI, M.–L., 1933 | MR

[7] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gos. izd. tekhn.-teoretich. lit., L., 1950 | MR

[8] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[9] Gaidomak S. V., “O kanonicheskoi strukture puchka vyrozhdennykh matrits-funktsii”, Izv. vuzov. Matem., 2012, no. 2, 23–33 | MR | Zbl

[10] Gaidomak S. V., “Trekhsloinyi raznostnyi metod resheniya lineinykh differentsialno-algebraicheskikh sistem uravnenii v chastnykh proizvodnykh”, Zhurn. vychisl. matem. i matem. fiziki, 49:9 (2009), 1–15 | MR