On regularization procedures with linear accuracy estimates of approximations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 30-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider numerical methods for stable approximation of solutions to irregular nonlinear equations with general smooth operators in the Hilbert space. The known variational procedures and iterative regularization methods deliver approximations with accuracy estimates greater in order than error levels in the input data. In the paper for certain components of the desired solution we establish the possibility of obtaining approximations with linear accuracy estimates relative to the error level. These components correspond to the projections of the solution onto proper subspaces of the symmetrized derivative for the operator of the problem.
Mots-clés : ill-posed problem, Tikhonov method, iterative regularization, Gauss–Newton method, accuracy estimate.
@article{IVM_2019_5_a2,
     author = {M. Yu. Kokurin},
     title = {On regularization procedures with linear accuracy estimates of approximations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--39},
     publisher = {mathdoc},
     number = {5},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a2/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On regularization procedures with linear accuracy estimates of approximations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 30
EP  - 39
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a2/
LA  - ru
ID  - IVM_2019_5_a2
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On regularization procedures with linear accuracy estimates of approximations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 30-39
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a2/
%G ru
%F IVM_2019_5_a2
M. Yu. Kokurin. On regularization procedures with linear accuracy estimates of approximations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 30-39. https://geodesic-test.mathdoc.fr/item/IVM_2019_5_a2/

[1] Bakushinskii A. B., Kokurin M. Yu., Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, LENAND, M., 2012

[2] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[3] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, Walter de Gruyter, Berlin, 2008 | MR

[4] Leonov A. S., “O vozmozhnosti polucheniya lineinykh otsenok tochnosti priblizhennykh reshenii obratnykh zadach”, Izv. vuzov. Matem., 2016, no. 10, 29–35 | Zbl

[5] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989 | MR

[6] Kokurin M. Yu., “Iterativno regulyarizovannye metody dlya neregulyarnykh nelineinykh operatornykh uravnenii s normalno razreshimoi proizvodnoi v reshenii”, Zhurn. vychisl. matem. i matem. fiz., 56:9 (2016), 1543–1555 | DOI | Zbl

[7] Kokurin M. Yu., “Accuracy estimates of Gauss–Newton type iterative regularization methods for nonlinear equations with operators having normally solvable derivative at the solution”, J. Inverse Ill-Posed Probl., 24:4 (2016), 449–462 | DOI | MR | Zbl

[8] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[9] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 2000 | MR

[10] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979