On boundedness and angular boundary values of subharmonic functions of classes Rθ
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 85-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the uniform boundedness in hypercyclic domains of subharmonic functions of classes Rθ and its relation to existence of angular limits at points of the unit circumference.
Mots-clés : subharmonic functions, angular limit, Rθ classes, hypercycle, hypercycle domain.
@article{IVM_2019_4_a7,
     author = {S. L. Berberyan},
     title = {On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {85--88},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a7/}
}
TY  - JOUR
AU  - S. L. Berberyan
TI  - On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 85
EP  - 88
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a7/
LA  - ru
ID  - IVM_2019_4_a7
ER  - 
%0 Journal Article
%A S. L. Berberyan
%T On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 85-88
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a7/
%G ru
%F IVM_2019_4_a7
S. L. Berberyan. On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 85-88. https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a7/

[1] Bagemihl F., “Some boundary properties of normal functions bounded on nontangential arcs”, Arch. Math., 14:6 (1963), 399–406 | DOI | MR | Zbl

[2] Berberyan S. L., “O granichnykh svoistvakh subgarmonicheskikh funktsii, porozhdayuschikh normalnye semeistva na podgruppakh avtomorfizmov edinichnogo kruga”, Izv. AN Arm. SSR, 15:4 (1980), 395–402 | Zbl

[3] Berberyan S. L., “Ob uglovykh granichnykh znacheniyakh normalnykh nepreryvnykh funktsii”, Izv. vuzov. Matem., 1986, no. 3, 22–28

[4] Lappan P., “Some results on harmonic normal functions”, Math. Zeitschr., 90:1 (1965), 155–159 | DOI | MR | Zbl

[5] Rung D. C., “Asymptotic values of normal subharmonic functions”, Math. Zeitschr., 84:1 (1964), 9–15 | DOI | MR | Zbl

[6] Gavrilov V. I., “Normalnye funktsii i pochti periodicheskie funktsii”, DAN SSSR, 240:4 (1978), 768–770 | Zbl

[7] Meek J., “Of Fatous points of normal subharmonic functions”, Mathematica Japonica, 22:3 (1977), 309–314 | MR | Zbl

[8] Berberyan S. L., “On angular boundary values of subharmonic functions from the class $N$”, Mathem. Montisingri, XX-XXI (2007–2008), 5–14 | MR | Zbl

[9] Tsuji M., “Littlewoods theorem on subharmonic functions in a unit circle”, Comment. Math. Univ. St. Pauli, 5:7 (1956), 3–16 | MR | Zbl