On stationary subgroups of compact homogeneous spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 36-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study some special properties of stationary subgroups and their Lie algebras for compact homogeneous spaces. We consider the cases of decomposable stationary Lie subalgebras and stationary subalgebras of small dimension. The case of nonreducible transitive actions of Lie groups is considered in detail.
Mots-clés : Lie group, homogeneous space, stationary subgroup, nonreducible action.
@article{IVM_2019_4_a3,
     author = {V. V. Gorbatsevich},
     title = {On stationary subgroups of compact homogeneous spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--51},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a3/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On stationary subgroups of compact homogeneous spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 36
EP  - 51
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a3/
LA  - ru
ID  - IVM_2019_4_a3
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On stationary subgroups of compact homogeneous spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 36-51
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a3/
%G ru
%F IVM_2019_4_a3
V. V. Gorbatsevich. On stationary subgroups of compact homogeneous spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 36-51. https://geodesic-test.mathdoc.fr/item/IVM_2019_4_a3/

[1] Gorbatsevich V. V., Onischik A. L., “Gruppy Li preobrazovanii”, Gruppy Li i algebry Li-1, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundament. napravleniya, 20, VINITI, M., 1988, 103–240

[2] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li-3, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundament. napravleniya, 41, VINITI, M., 1990

[3] Gorbatsevich V. V., “Kompaktnye odnorodnye prostranstva i ikh obobscheniya”, Geometriya, SMFN, 22, RUDN, M., 2007, 38–72

[4] Onischik A. L., “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh”, Matem. sb., 74 (1967), 398–416

[5] Tits J., “Espaces homogenes complexes compacts”, Comm. Math. Helv., 37 (1962), 111–120 | DOI | MR | Zbl

[6] Mostow G. D., “Factor spaces of solvable groups”, Ann. of Math., 60 (1954), 1–27 | DOI | MR | Zbl

[7] Vishik E. Ya., “Kompaktnye odnorodnye prostranstva i invariantnye affinnye svyaznosti na nikh”, Izv. vuzov. Matem., 1975, no. 10, 82–85

[8] Gorbatsevich V. V., “Kompaktnye i blizkie k nim odnorodnye prostranstva reduktivnykh grupp Li”, Matem. sb., 207 (2016), 31–46 | DOI

[9] Togo S., “On the derivation algebras of Lie algebras”, Canad. J. Math., 13 (1961), 201–216 | DOI | MR | Zbl

[10] Richardson R., Rohrle G., Steinberg R., “Parabolic subgroups with abelian unipotent radical”, Invent. Math., 110 (1992), 649–671 | DOI | MR | Zbl

[11] Mostow G. D., “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. Math., 52 (1950), 606–636 | DOI | MR | Zbl

[12] Gorbatsevich V. V., “O trekhmernykh odnorodnykh prostranstvakh”, Sib. matem. zhurn., 18 (1977), 280–293 | Zbl

[13] Winkelman J., The classification of three-dimensional homogeneous complex manifolds, Lect. Notes in Math., 1602, Springer, 1995 | DOI | MR

[14] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1975

[15] Komrakov V., Churyumov A., Doubrov V., Two dimensional homogeneous spaces, ISLC, Minsk, 1998

[16] Gorbatsevich V. V., “O klassifikatsii kompleksnykh odnosvyaznykh odnorodnykh prostranstv razmernostei ne bolee $2$”, Izv. vuzov. Matem., 2013, no. 3, 16–32 | Zbl

[17] Gorbatsevich V. V., “Intranzitivnye algebry Li vektornykh polei na kompleksnoi ploskosti”, Tr. semin. po vektornomu i tenzornomu anal., 29, 2013, 27–38

[18] Doubrov B., Three-dimensional homogeneous spaces with non-solvable transformation groups, arXiv: 1704.04393

[19] Johnson R. W., “Presentation of solvmanifolds”, Amer. J. Math., 94 (1972), 82–102 | DOI | MR | Zbl