Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_3_a3, author = {E. N. Khasanova and P. L. Shabalin}, title = {Hilbert boundary-value problem with different two-sided power-law vorticity at infinity}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {38--53}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/} }
TY - JOUR AU - E. N. Khasanova AU - P. L. Shabalin TI - Hilbert boundary-value problem with different two-sided power-law vorticity at infinity JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 38 EP - 53 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/ LA - ru ID - IVM_2019_3_a3 ER -
%0 Journal Article %A E. N. Khasanova %A P. L. Shabalin %T Hilbert boundary-value problem with different two-sided power-law vorticity at infinity %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 38-53 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/ %G ru %F IVM_2019_3_a3
E. N. Khasanova; P. L. Shabalin. Hilbert boundary-value problem with different two-sided power-law vorticity at infinity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 38-53. https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/
[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977
[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968
[3] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. matem. zhurn., 49:4 (2008), 898–915 | MR | Zbl
[4] Shabalin P. L., “Odin sluchai zadachi Gilberta s osobennostyami koeffitsientov.”, Izv. Saratovsk. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 9:1 (2009), 58–68 | MR
[5] Sabitov I. Kh., “Ob odnoi granichnoi zadache teorii funktsii.”, Izv. otd. geol.-khim. i tekhn. nauk AN Tadzh. SSR, 4:6 (1961), 3–10 | Zbl
[6] Salimov R. B., Tuktamyshov N. K., “Reshenie zadachi Gilberta dlya koltsa v osobom sluchae i ego primenenie k odnoi zadache vzryva”, Matem. zametki, 66:1 (1999), 135–144 | DOI | Zbl
[7] Bezrodnykh S. I., Vlasov V. I., “Zadacha Rimana–Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zhurn. vychisl. matem. i matem. fiziki, 42:3 (2002), 277–312 | MR | Zbl
[8] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986
[9] Tolochko M. E., “O razreshimosti kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1971, no. 3, 52–59
[10] Sandrygailo I. E., “O kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Dokl. Akad. nauk BSSR, 19:10 (1975), 872–875 | Zbl
[11] Monakhov V. N., Semenko E. V., Kraevye zadachi i psevdodifferentsialnye operatory na rimanovykh poverkhnostyakh, Fizmatlit, M., 2003
[12] Monakhov V. N., Semenko E. V., “Kraevye zadachi s beskonechnym indeksom v prostranstvakh Khardi”, DAN SSSR, 291:3 (1986), 544–547
[13] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1974, no. 6, 16–23
[14] Salimov R. B., Shabalin P. L., “K resheniyu zadachi Gilberta s beskonechnym indeksom”, Matem. zametki, 73:5 (2003), 724–734 | DOI | Zbl
[15] Alekhno A. G., “Kraevaya zadacha Rimana s beskonechnym indeksom v sluchae mnogostoronnego zavikhreniya”, Dokl. AN BSSR, 25:8 (1981), 681–684 | Zbl
[16] Sevruk A. B., “Odnorodnaya kraevaya zadacha Gilberta s beskonechnym indeksom dlya kusochno analiticheskikh funktsii”, Vestn. BGU. Ser. 1, 2010, no. 1, 76–81 | MR | Zbl
[17] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. o-vo, Kazan, 2005
[18] Salimov R. B., Shabalin P. L., “O razreshimosti odnorodnoi zadachi Gilberta so schetnym mnozhestvom tochek razryva koeffitsientov i dvustoronnim zavikhreniem na beskonechnosti poryadka menshe $1/2$”, Ufimsk. matem. zhurn., 5:2 (2013), 82–93 | MR
[19] Salimov R., Shabalin P., “Solvability of the Riemann–Hilbert boundary value problem with a two-side curling at infinity point of order less than $1$”, Complex Var. Elliptic Equ., 59:12 (2014), 1739–1757 | DOI | MR | Zbl
[20] Zhuravleva M. I., “Odnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom so schetnym mnozhestvom razryvov pervogo roda ee koeffitsienta”, DAN SSSR, 210:1 (1973), 15–17 | Zbl
[21] Karabasheva E. N., “O razreshimosti odnorodnoi zadachi Gilberta so schetnym mnozhestvom tochek razryva koeffitsientov i dvustoronnim raznogo poryadka zavikhreniem na beskonechnosti”, Izv. KGASU, 1:27 (2014), 242–252
[22] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956