Hilbert boundary-value problem with different two-sided power-law vorticity at infinity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 38-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Hilbert boundary-value problem for the half-plane with the countable set of points of discontinuity of the first kind and unique point of discontinuity of the second kind at infinity of the argument of function of coefficients of the boundary condition. This leads to the different two-sided power-law vorticity at infinity. In this paper we derive the general solution and deduce the full solution to the homogeneous problem for the special class of function. We also found the the general solution of the non-homogeneous problem.
Mots-clés : Hilbert boundary-value problem, infinity index, vorticity at infinity, curling at infinity, entire function.
@article{IVM_2019_3_a3,
     author = {E. N. Khasanova and P. L. Shabalin},
     title = {Hilbert boundary-value problem with different two-sided power-law vorticity at infinity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--53},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/}
}
TY  - JOUR
AU  - E. N. Khasanova
AU  - P. L. Shabalin
TI  - Hilbert boundary-value problem with different two-sided power-law vorticity at infinity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 38
EP  - 53
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/
LA  - ru
ID  - IVM_2019_3_a3
ER  - 
%0 Journal Article
%A E. N. Khasanova
%A P. L. Shabalin
%T Hilbert boundary-value problem with different two-sided power-law vorticity at infinity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 38-53
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/
%G ru
%F IVM_2019_3_a3
E. N. Khasanova; P. L. Shabalin. Hilbert boundary-value problem with different two-sided power-law vorticity at infinity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 38-53. https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a3/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[3] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. matem. zhurn., 49:4 (2008), 898–915 | MR | Zbl

[4] Shabalin P. L., “Odin sluchai zadachi Gilberta s osobennostyami koeffitsientov.”, Izv. Saratovsk. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 9:1 (2009), 58–68 | MR

[5] Sabitov I. Kh., “Ob odnoi granichnoi zadache teorii funktsii.”, Izv. otd. geol.-khim. i tekhn. nauk AN Tadzh. SSR, 4:6 (1961), 3–10 | Zbl

[6] Salimov R. B., Tuktamyshov N. K., “Reshenie zadachi Gilberta dlya koltsa v osobom sluchae i ego primenenie k odnoi zadache vzryva”, Matem. zametki, 66:1 (1999), 135–144 | DOI | Zbl

[7] Bezrodnykh S. I., Vlasov V. I., “Zadacha Rimana–Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zhurn. vychisl. matem. i matem. fiziki, 42:3 (2002), 277–312 | MR | Zbl

[8] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986

[9] Tolochko M. E., “O razreshimosti kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1971, no. 3, 52–59

[10] Sandrygailo I. E., “O kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Dokl. Akad. nauk BSSR, 19:10 (1975), 872–875 | Zbl

[11] Monakhov V. N., Semenko E. V., Kraevye zadachi i psevdodifferentsialnye operatory na rimanovykh poverkhnostyakh, Fizmatlit, M., 2003

[12] Monakhov V. N., Semenko E. V., “Kraevye zadachi s beskonechnym indeksom v prostranstvakh Khardi”, DAN SSSR, 291:3 (1986), 544–547

[13] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1974, no. 6, 16–23

[14] Salimov R. B., Shabalin P. L., “K resheniyu zadachi Gilberta s beskonechnym indeksom”, Matem. zametki, 73:5 (2003), 724–734 | DOI | Zbl

[15] Alekhno A. G., “Kraevaya zadacha Rimana s beskonechnym indeksom v sluchae mnogostoronnego zavikhreniya”, Dokl. AN BSSR, 25:8 (1981), 681–684 | Zbl

[16] Sevruk A. B., “Odnorodnaya kraevaya zadacha Gilberta s beskonechnym indeksom dlya kusochno analiticheskikh funktsii”, Vestn. BGU. Ser. 1, 2010, no. 1, 76–81 | MR | Zbl

[17] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. o-vo, Kazan, 2005

[18] Salimov R. B., Shabalin P. L., “O razreshimosti odnorodnoi zadachi Gilberta so schetnym mnozhestvom tochek razryva koeffitsientov i dvustoronnim zavikhreniem na beskonechnosti poryadka menshe $1/2$”, Ufimsk. matem. zhurn., 5:2 (2013), 82–93 | MR

[19] Salimov R., Shabalin P., “Solvability of the Riemann–Hilbert boundary value problem with a two-side curling at infinity point of order less than $1$”, Complex Var. Elliptic Equ., 59:12 (2014), 1739–1757 | DOI | MR | Zbl

[20] Zhuravleva M. I., “Odnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom so schetnym mnozhestvom razryvov pervogo roda ee koeffitsienta”, DAN SSSR, 210:1 (1973), 15–17 | Zbl

[21] Karabasheva E. N., “O razreshimosti odnorodnoi zadachi Gilberta so schetnym mnozhestvom tochek razryva koeffitsientov i dvustoronnim raznogo poryadka zavikhreniem na beskonechnosti”, Izv. KGASU, 1:27 (2014), 242–252

[22] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956