Solvability of inhomogeneous autonomous differential equation with aftereffect on the negative semi-axis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient condition of solvability for a linear autonomous inhomogeneous functional differential equation with aftereffect and find the representation of all solutions in the special space of integrable functions with exponential weight. The obtained results are applied for study of two inhomogeneous differential equations with delay (the first equation is with concentrated delay, and the second one is with distributed delay). We give effective description of the space of solutions for these equations.
Mots-clés : functional differential equation, aftereffect, inhomogeneous equation, solvability on the axis, space of functions with exponential weight.
@article{IVM_2019_3_a0,
     author = {A. S. Balandin and T. L. Sabatulina},
     title = {Solvability of inhomogeneous autonomous differential equation with aftereffect on the negative semi-axis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a0/}
}
TY  - JOUR
AU  - A. S. Balandin
AU  - T. L. Sabatulina
TI  - Solvability of inhomogeneous autonomous differential equation with aftereffect on the negative semi-axis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 18
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a0/
LA  - ru
ID  - IVM_2019_3_a0
ER  - 
%0 Journal Article
%A A. S. Balandin
%A T. L. Sabatulina
%T Solvability of inhomogeneous autonomous differential equation with aftereffect on the negative semi-axis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-18
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a0/
%G ru
%F IVM_2019_3_a0
A. S. Balandin; T. L. Sabatulina. Solvability of inhomogeneous autonomous differential equation with aftereffect on the negative semi-axis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 3-18. https://geodesic-test.mathdoc.fr/item/IVM_2019_3_a0/

[1] Balandin A. S., Sabatulina T. L., “Razreshimost avtonomnogo differentsialnogo uravneniya s ogranichennym posledeistviem na otritsatelnoi poluosi”, Izv. vuzov. Matem., 2017, no. 10, 26–37 | Zbl

[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981

[3] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972

[4] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[5] Azbelev N. V., Simonov P. M., Stability of differential equations with aftereffects, Stability and control: theory, methods and appl., 20, Taylor Francis, London, 2003 | MR

[6] Mulyukov M. V., “Ob asimptoticheskoi ustoichivosti dvuparametricheskoi sistemy differentsialnykh uravnenii s zapazdyvaniem”, Izv. vuzov. Matem., 2014, no. 6, 48–55 | MR | Zbl

[7] Balandin A. S., “O razreshimosti na osi nekotorykh klassov differentsialno-raznostnykh uravnenii”, Vestn. Tambovsk. un-ta. Ser.: Estestven. i tekhn. nauki, 18:5–2 (2013), 2449–2451

[8] Balandin A. S., “O razreshimosti na osi avtonomnykh differentsialnykh uravnenii s ogranichennym zapazdyvaniem”, Vestn. Tambovsk. un-ta. Ser.: Estestven. i tekhn. nauki, 20:5 (2015), 1044–1050

[9] Balandin A. S., Malygina V. V., “O razreshimosti na osi avtonomnykh differentsialnykh uravnenii s posledeistviem”, Vestn. Permsk. un-ta. Ser.: Matem. Mekhan. Informatika, 2016, no. 2, 7–13

[10] Balandin A. S., “O razreshimosti na otritsatelnoi poluosi differentsialno-raznostnogo uravneniya vtorogo poryadka”, Sb. tr. IX mezhdunar. konf. «Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii (PMTUKT-2016)» (Voronezh, 20–26 sentyabrya 2016), OOO Izdatelstvo «Nauchnaya kniga», Voronezh, 2016, 39–42

[11] Balandin A. S., “On the solvability on the negative semi-axis of an autonomous differential equation with delay”, J. Math. Sci., 230:5 (2018), 656–659 | DOI | MR | Zbl

[12] Zubov V. I., “K teorii lineinykh statsionarnykh sistem s zapazdyvayuschim argumentom”, Izv. vuzov. Matem., 1958, no. 6, 86–95 | Zbl

[13] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991

[14] Titchmarsh E. C., Introduction to the theory of Fourier integrals, The Clarendon Press, Oxford, 1948 | MR

[15] Pitt H. R., “On a class of linear integro-differential equations”, Proc. Cambridge Phil. Soc., 43:2 (1947), 153–163 | DOI | MR | Zbl

[16] Neimark Yu. I., Dinamicheskie sistemy i upravlyaemye protsessy, Nauka, M., 1978

[17] Mulyukov M. V., “Ustoichivost odnogo lineinogo avtonomnogo differentsialnogo uravneniya s sosredotochennym i raspredelennym zapazdyvaniem”, Vestn. Tambovsk. un-ta. Ser.: Estestven. i tekhn. nauki, 20:5 (2015), 1325–1331

[18] Khokhlova T., Kipnis M., Malygina V., “The stability cone for a delay differential matrix equation”, Applied Math. Lett., 24:5 (2011), 742–745 | DOI | MR | Zbl

[19] Balandin A. S., Sabatulina T. L., “O lineinoi svyaznosti oblastei ustoichivosti differentsialnykh uravnenii s posledeistviem”, Funkts.-differents. uravneniya: teoriya i prilozheniya, 2018, 29–38

[20] Plaksina V. P., Plaksina I. M., Plekhova E. V., “O razreshimosti zadachi Koshi dlya odnogo kvazilineinogo singulyarnogo funktsionalno-differentsialnogo uravneniya”, Izv. vuzov. Matem., 2016, no. 2, 54–61

[21] Bravyi E., Plaksina I., “On the Cauchy problem from singular functional differential equations”, Adv. Diff. Equat., 2017, 91 | DOI | MR | Zbl