Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_1_a8, author = {P. V. Bibikov}, title = {On classification of polynomial {Hamiltonians} with non-degenerated linear-stable singular point}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {86--88}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_1_a8/} }
TY - JOUR AU - P. V. Bibikov TI - On classification of polynomial Hamiltonians with non-degenerated linear-stable singular point JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 86 EP - 88 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2019_1_a8/ LA - ru ID - IVM_2019_1_a8 ER -
P. V. Bibikov. On classification of polynomial Hamiltonians with non-degenerated linear-stable singular point. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 86-88. https://geodesic-test.mathdoc.fr/item/IVM_2019_1_a8/
[1] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 28, VINITI, M., 1988, 5–289
[2] Kruglikov B., Lychagin V., “Global Lie–Tresse theorem”, Select. Math., New Ser., 22:3 (2016) | DOI | MR | Zbl
[3] Birkhoff G. D., Dynamical systems, Amer. Math. Soc. Colloqium Publ., IX, Amer. Math. Soc., 1927 | MR | Zbl
[4] Arzhantsev I., Flener H., Kaliman S., Kutzshebauch F., Zaidenberg M., Infinite transivity in affine varieties, arXiv: 1210.6937