On irrationality measure arctg13
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 69-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the arithmetic properties of the value arctg13. We elaborate special integral construction with the property of symmetry for evaluating irrationality measure of this number. We research linear form, generated by this integral, and prove a new result for extent of the irrationality of arctg13, which improves the previous one.
Mots-clés : irrationality measure, linear form.
@article{IVM_2019_1_a6,
     author = {V. Kh. Salikhov and M. G. Bashmakova},
     title = {On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--75},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2019_1_a6/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
AU  - M. G. Bashmakova
TI  - On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 69
EP  - 75
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2019_1_a6/
LA  - ru
ID  - IVM_2019_1_a6
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%A M. G. Bashmakova
%T On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 69-75
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2019_1_a6/
%G ru
%F IVM_2019_1_a6
V. Kh. Salikhov; M. G. Bashmakova. On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 69-75. https://geodesic-test.mathdoc.fr/item/IVM_2019_1_a6/

[1] Salikhov V. Kh., “O mere irratsionalnosti $\ln3$”, Dokl. RAN, 417:6 (2007), 753–755 | Zbl

[2] Wu Q., Wang L., “On the irrationality measure of $\log 3$”, J. Number Theory, 142 (2014), 264–273 | DOI | MR | Zbl

[3] Huttner M., “Irrationalité de certaines intégrales hypergéométriques”, J. Number Theory, 26 (1987), 166–178 | DOI | MR | Zbl

[4] Heimonen A., Matala-Aho T., Väänänen K., “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81:1–2 (1993), 183–202 | DOI | MR | Zbl

[5] Heimonen A., Matala-Aho T., V\"{aä}nänen K., “An application of Jacobi type polynomials to irrationality measures”, Bull. Austral. Math. Soc., 50:2 (1994), 225–243 | DOI | MR | Zbl

[6] Tomashevskaya E. B., “O mere irratsionalnosti chisla $\ln5+ \pi/2$ i nekotorykh drugikh chisel”, Chebyshevsk. sb., 8:2 (2007), 97–108

[7] Bashmakova M. G., “O priblizhenii znachenii gipergeometricheskoi funktsii Gaussa ratsionalnymi drobyami”, Matem. zametki, 88:6 (2010), 785–797 | DOI | Zbl

[8] Hata M., “Rational approximation to $\pi$ and some other numbers”, Acta Arith., 63:4 (1993), 335–349 | DOI | MR | Zbl

[9] Wu Q., “On the linear independence measure of logarithms of rational numbers”, Math. Comput., 72:242 (2002), 901–911 | DOI | MR

[10] Salikhov V. Kh., “O mere irratsionalnosti chisla $\pi$”, UMN, 63:3 (2008), 163–164 | DOI

[11] Marcovecchio R., “The Rhin–Viola method for $\ln 2$”, Acta Arith., 139:2 (2009), 147–184 | DOI | MR | Zbl