Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_8_a7, author = {A. Yu. Trynin}, title = {A criterion of convergence of {Lagrange--Sturm--Liouville} processes in terms of one-sided modulus of variation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {61--74}, publisher = {mathdoc}, number = {8}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/} }
TY - JOUR AU - A. Yu. Trynin TI - A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 61 EP - 74 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/ LA - ru ID - IVM_2018_8_a7 ER -
%0 Journal Article %A A. Yu. Trynin %T A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 61-74 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/ %G ru %F IVM_2018_8_a7
A. Yu. Trynin. A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 61-74. https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/
[1] Natanson G. I., “Ob odnom interpolyatsionnom protsesse”, Uchen. zap. Leningradsk. ped. in-ta, 166 (1958), 213–219
[2] Trynin A. Yu., “O raskhodimosti interpolyatsionnykh protsessov Lagranzha po sobstvennym funktsiyam zadachi Shturma–Liuvillya”, Izv. vuzov. Matem., 2010, no. 11, 74–85
[3] Trynin A. Yu., “Ob otsutstvii ustoichivosti interpolirovaniya po sobstvennym funktsiyam zadachi Shturma–Liuvillya”, Izv. vuzov. Matem., 2000, no. 9, 60–73 | MR | Zbl
[4] Trynin A. Yu., “Differentsialnye svoistva nulei sobstvennykh funktsii zadachi Shturma–Liuvillya”, Ufimsk. matem. zhurn., 3:4 (2011), 133–143
[5] Trynin A. Yu., “Ob odnoi obratnoi uzlovoi zadache dlya operatora Shturma–Liuvillya”, Ufimsk. matem. zhurn., 5:4 (2013), 116–129
[6] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, UMN, 53:6 (1998), 53–128 | DOI
[7] Livne Oren E., Brandt Achi E., “The multilevel sync transform”, SIAM J. on Sci. Comp., 33:4 (2011), 1726–1738 | DOI | MR | Zbl
[8] Coroianu L., Sorin G., “Localization results for the non-truncated max-product sampling operators based on Fejer and sinc-type kernels”, Demonstratio Math., 49:1 (2016), 38–49 | MR | Zbl
[9] Richardson M., Trefethen L., “A sinc function analogue of Chebfun”, SIAM J. Sci. Comput., 33:5 (2011), 2519–2535 | DOI | MR | Zbl
[10] Khosrow M., Yaser R., Hamed S., “Numerical solution for first kind Fredholm integral equations by using sinc collocation method”, International J. Appl. Phys. and Math., 6:3 (2016), 120–128 | DOI
[11] Marwa M., “Sinc approximation of eigenvalues of Sturm–Liouville problems with a Gaussian multiplier”, Calcolo: a quarterly on numerical analysis and theory of computation, 51:3 (2014), 465–484 | MR
[12] Trynin A.Yu., Sklyarov V. P., “Error of sinc approximation of analytic functions on an interval”, Sampling Theory in Signal and Image Processing, 7:3 (2008), 263–270 | MR | Zbl
[13] Trynin A. Yu., “Kriterii potochechnoi i ravnomernoi skhodimosti sink-priblizhenii nepreryvnykh funktsii na otrezke”, Matem. sb., 198:10 (2007), 141–158 | DOI | Zbl
[14] Umakhanov A. Ya., Sharapudinov I. I., “Interpolyatsiya funktsii summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoi skhodimosti”, Vladikavkazsk. matem. zhurn., 18:4 (2016), 61–70 | MR
[15] Trynin A. Yu., “Obobschenie teoremy otschetov Uittekera–Kotelnikova–Shennona dlya nepreryvnykh funktsii na otrezke”, Matem. sb., 200:11 (2009), 61–108 | DOI | Zbl
[16] Dyachenko M. I., “Ob odnom klasse metodov summirovaniya kratnykh ryadov Fure”, Matem. sb., 204:3 (2013), 3–18 | DOI
[17] Skopina M. A., Maksimenko I. E., “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39
[18] Farkov Yu. A., “O nailuchshem lineinom priblizhenii golomorfnykh funktsii”, Fundament. i prikl. matem., 19:5 (2014), 185–212
[19] Sansone Dzh., Obyknovennye differentsialnye uravneniya, In. lit., M., 1953
[20] Levitan B. M., Operatory Shturma–Liuvillya i Diraka, Nauka. Gl. red. fiz.-mat. lit., M., 1988
[21] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 1, Izd-vo Saratovsk. un-ta, Saratov, 1990
[22] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 2, Izd-vo Saratovsk. un-ta, Saratov, 1990