A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 61-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion of uniform convergence inside the interval (0,π) of interpolation processes constructed from eigenfunctions of the regular Sturm–Liouville problem with a continuous potential of bounded variation. The condition of the characteristic is formulated in terms of a one-sided modulus of variations of the function.
Mots-clés : sinc approximation, interpolation functions, uniform approximation, Lagrange–Sturm–Liouville processes.
@article{IVM_2018_8_a7,
     author = {A. Yu. Trynin},
     title = {A criterion of convergence of {Lagrange--Sturm--Liouville} processes in terms of one-sided modulus of variation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--74},
     publisher = {mathdoc},
     number = {8},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 61
EP  - 74
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/
LA  - ru
ID  - IVM_2018_8_a7
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 61-74
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/
%G ru
%F IVM_2018_8_a7
A. Yu. Trynin. A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 61-74. https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a7/

[1] Natanson G. I., “Ob odnom interpolyatsionnom protsesse”, Uchen. zap. Leningradsk. ped. in-ta, 166 (1958), 213–219

[2] Trynin A. Yu., “O raskhodimosti interpolyatsionnykh protsessov Lagranzha po sobstvennym funktsiyam zadachi Shturma–Liuvillya”, Izv. vuzov. Matem., 2010, no. 11, 74–85

[3] Trynin A. Yu., “Ob otsutstvii ustoichivosti interpolirovaniya po sobstvennym funktsiyam zadachi Shturma–Liuvillya”, Izv. vuzov. Matem., 2000, no. 9, 60–73 | MR | Zbl

[4] Trynin A. Yu., “Differentsialnye svoistva nulei sobstvennykh funktsii zadachi Shturma–Liuvillya”, Ufimsk. matem. zhurn., 3:4 (2011), 133–143

[5] Trynin A. Yu., “Ob odnoi obratnoi uzlovoi zadache dlya operatora Shturma–Liuvillya”, Ufimsk. matem. zhurn., 5:4 (2013), 116–129

[6] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, UMN, 53:6 (1998), 53–128 | DOI

[7] Livne Oren E., Brandt Achi E., “The multilevel sync transform”, SIAM J. on Sci. Comp., 33:4 (2011), 1726–1738 | DOI | MR | Zbl

[8] Coroianu L., Sorin G., “Localization results for the non-truncated max-product sampling operators based on Fejer and sinc-type kernels”, Demonstratio Math., 49:1 (2016), 38–49 | MR | Zbl

[9] Richardson M., Trefethen L., “A sinc function analogue of Chebfun”, SIAM J. Sci. Comput., 33:5 (2011), 2519–2535 | DOI | MR | Zbl

[10] Khosrow M., Yaser R., Hamed S., “Numerical solution for first kind Fredholm integral equations by using sinc collocation method”, International J. Appl. Phys. and Math., 6:3 (2016), 120–128 | DOI

[11] Marwa M., “Sinc approximation of eigenvalues of Sturm–Liouville problems with a Gaussian multiplier”, Calcolo: a quarterly on numerical analysis and theory of computation, 51:3 (2014), 465–484 | MR

[12] Trynin A.Yu., Sklyarov V. P., “Error of sinc approximation of analytic functions on an interval”, Sampling Theory in Signal and Image Processing, 7:3 (2008), 263–270 | MR | Zbl

[13] Trynin A. Yu., “Kriterii potochechnoi i ravnomernoi skhodimosti sink-priblizhenii nepreryvnykh funktsii na otrezke”, Matem. sb., 198:10 (2007), 141–158 | DOI | Zbl

[14] Umakhanov A. Ya., Sharapudinov I. I., “Interpolyatsiya funktsii summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoi skhodimosti”, Vladikavkazsk. matem. zhurn., 18:4 (2016), 61–70 | MR

[15] Trynin A. Yu., “Obobschenie teoremy otschetov Uittekera–Kotelnikova–Shennona dlya nepreryvnykh funktsii na otrezke”, Matem. sb., 200:11 (2009), 61–108 | DOI | Zbl

[16] Dyachenko M. I., “Ob odnom klasse metodov summirovaniya kratnykh ryadov Fure”, Matem. sb., 204:3 (2013), 3–18 | DOI

[17] Skopina M. A., Maksimenko I. E., “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39

[18] Farkov Yu. A., “O nailuchshem lineinom priblizhenii golomorfnykh funktsii”, Fundament. i prikl. matem., 19:5 (2014), 185–212

[19] Sansone Dzh., Obyknovennye differentsialnye uravneniya, In. lit., M., 1953

[20] Levitan B. M., Operatory Shturma–Liuvillya i Diraka, Nauka. Gl. red. fiz.-mat. lit., M., 1988

[21] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 1, Izd-vo Saratovsk. un-ta, Saratov, 1990

[22] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 2, Izd-vo Saratovsk. un-ta, Saratov, 1990