On a problem for mixed-type equation with fractional derivative
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a mixed-type equation with a Riemann–Liouville partial fractional derivative we investigate a problem, in which the boundary condition contains a linear combination of generalized fractional operators with a Gauss hypergeometric function. The uniqueness of a solution to the problem is proved for various values of the parameters of these operators. The existence of the solution is presented in an explicit form as a solution to an equation with fractional derivatives of different orders.
Mots-clés : non-local problem, differential equation of fractional order, generalized operator, Gauss hypergeometric function, Cauchy problem.
@article{IVM_2018_8_a5,
     author = {O. A. Repin},
     title = {On a problem for mixed-type equation with fractional derivative},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--51},
     publisher = {mathdoc},
     number = {8},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a5/}
}
TY  - JOUR
AU  - O. A. Repin
TI  - On a problem for mixed-type equation with fractional derivative
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 46
EP  - 51
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a5/
LA  - ru
ID  - IVM_2018_8_a5
ER  - 
%0 Journal Article
%A O. A. Repin
%T On a problem for mixed-type equation with fractional derivative
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 46-51
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a5/
%G ru
%F IVM_2018_8_a5
O. A. Repin. On a problem for mixed-type equation with fractional derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 46-51. https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a5/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[2] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[3] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, Saratovsk. un-t, 1992

[4] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[5] Repin O. A., “Kraevaya zadacha dlya differentsialnogo uravneniya s chastnoi drobnoi proizvodnoi Rimana–Liuvillya”, Ufimsk. matem. zhurn., 7:3 (2015), 71–75

[6] Repin O. A., Frolov A. A., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo tipa s chastnoi drobnoi proizvodnoi Rimana–Liuvillya”, Differents. uravneniya, 52:10 (2016), 1436–1440 | DOI | Zbl

[7] Repin O. A., Tarasenko A. V., “Ob odnoi zadache dlya uravneniya smeshannogo tipa s chastnoi drobnoi proizvodnoi Rimana–Liuvillya”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz-matem. nauki, 20:6 (2016), 636–643 | DOI

[8] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[9] Kilbas A. A., Repin O. A., “O razreshimosti kraevoi zadachi dlya uravneniya smeshannogo tipa s chastnoi drobnoi proizvodnoi Rimana–Liuvillya”, Differents. uravneniya, 46:10 (2010), 1453–1460 | Zbl

[10] Kilbas A. A., Repin O. A., “Zadacha so smescheniem dlya parabolo-giperbolicheskogo uravneniya”, Differents. uravneniya, 34:6 (1998), 799–805 | Zbl

[11] Kilbas A. A., Srivastava H.M, Trujillo J. J., Theory and applications of fractional differential equations, North–Holland. Math. Studies, 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl