Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_8_a4, author = {E. V. Kotova and V. A. Kudinov and E. V. Stefanyuk and T. B. Tarabrina}, title = {Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--45}, publisher = {mathdoc}, number = {8}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/} }
TY - JOUR AU - E. V. Kotova AU - V. A. Kudinov AU - E. V. Stefanyuk AU - T. B. Tarabrina TI - Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 33 EP - 45 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/ LA - ru ID - IVM_2018_8_a4 ER -
%0 Journal Article %A E. V. Kotova %A V. A. Kudinov %A E. V. Stefanyuk %A T. B. Tarabrina %T Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 33-45 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/ %G ru %F IVM_2018_8_a4
E. V. Kotova; V. A. Kudinov; E. V. Stefanyuk; T. B. Tarabrina. Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 33-45. https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/
[1] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shk., M., 1967
[2] Kartashov E. M., Analiticheskie metody teploprovodnosti tverdykh tel, Vyssh. shk., M., 1979
[3] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M.–L., 1962
[4] Tsoi P. V., Sistemnye metody rascheta kraevykh zadach teplomassoperenosa, 3-e izd., pererab. i dop., Izd-vo MEI, M., 2005
[5] Lykov A. V., “Metody resheniya nelineinykh uravnenii nestatsionarnoi teploprovodnosti”, Energetika i transport, 1970, no. 5, 109–150 | Zbl
[6] Gudmen T., “Primenenie integralnykh metodov v nelineinykh zadachakh nestatsionarnogo teploobmena”, Problemy teploobmena, Sb. nauchn. tr., Atomizdat, M., 1967, 41–96
[7] Kudinov I. V., Kudinov V. A., Kotova E. V., “Analiticheskie resheniya zadach teploprovodnosti na osnove opredeleniya fronta teplovogo vozmuscheniya”, Izv. vuzov. Matem., 2016, no. 11, 27–41 | Zbl
[8] Kudinov V. A., Kudinov I. V., Analiticheskie resheniya parabolicheskikh i giperbolicheskikh uravnenii teplomassoperenosa, INFRA-M, M., 2013
[9] Stefanyuk E. V., Kudinov V. A., “Poluchenie priblizhennykh analiticheskikh reshenii pri rassoglasovanii nachalnykh i granichnykh uslovii v zadachakh teorii teploprovodnosti”, Izv. vuzov. Matem., 2010, no. 4, 63–71 | MR | Zbl
[10] Kantorovich L. V., “Ob odnom metode priblizhennogo resheniya differentsialnykh uravnenii v chastnykh proizvodnykh”, DAN SSSR, 2:9 (1934), 532–536
[11] Fedorov F. M., Granichnyi metod resheniya prikladnykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 2000