Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 33-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using additional sought-for functions and additional boundary conditions in integral method of heat balance, we obtain high-accuracy approximate analytic solutions to non-stationary heat conductivity problem for infinite solid cylinder that allow to estimate a temperature state practically in all time range of non-stationary process. The heat conducting process is divided into two stages with respect to time. The initial problem for equation in partial derivatives is represented in the form of two problems, in which the integration is performed over ordinary differential equations with respect to respective additional sought-for functions. This method allows to simplify substantially the process of solving the initial problem by reducing it to sequentially solving two problems, in which of them they use additional boundary conditions.
Mots-clés : non-stationary thermal conductivity, infinite solid cylinder, integral method of heat balance, additional boundary conditions.
@article{IVM_2018_8_a4,
     author = {E. V. Kotova and V. A. Kudinov and E. V. Stefanyuk and T. B. Tarabrina},
     title = {Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--45},
     publisher = {mathdoc},
     number = {8},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/}
}
TY  - JOUR
AU  - E. V. Kotova
AU  - V. A. Kudinov
AU  - E. V. Stefanyuk
AU  - T. B. Tarabrina
TI  - Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 33
EP  - 45
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/
LA  - ru
ID  - IVM_2018_8_a4
ER  - 
%0 Journal Article
%A E. V. Kotova
%A V. A. Kudinov
%A E. V. Stefanyuk
%A T. B. Tarabrina
%T Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 33-45
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/
%G ru
%F IVM_2018_8_a4
E. V. Kotova; V. A. Kudinov; E. V. Stefanyuk; T. B. Tarabrina. Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 33-45. https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a4/

[1] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shk., M., 1967

[2] Kartashov E. M., Analiticheskie metody teploprovodnosti tverdykh tel, Vyssh. shk., M., 1979

[3] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M.–L., 1962

[4] Tsoi P. V., Sistemnye metody rascheta kraevykh zadach teplomassoperenosa, 3-e izd., pererab. i dop., Izd-vo MEI, M., 2005

[5] Lykov A. V., “Metody resheniya nelineinykh uravnenii nestatsionarnoi teploprovodnosti”, Energetika i transport, 1970, no. 5, 109–150 | Zbl

[6] Gudmen T., “Primenenie integralnykh metodov v nelineinykh zadachakh nestatsionarnogo teploobmena”, Problemy teploobmena, Sb. nauchn. tr., Atomizdat, M., 1967, 41–96

[7] Kudinov I. V., Kudinov V. A., Kotova E. V., “Analiticheskie resheniya zadach teploprovodnosti na osnove opredeleniya fronta teplovogo vozmuscheniya”, Izv. vuzov. Matem., 2016, no. 11, 27–41 | Zbl

[8] Kudinov V. A., Kudinov I. V., Analiticheskie resheniya parabolicheskikh i giperbolicheskikh uravnenii teplomassoperenosa, INFRA-M, M., 2013

[9] Stefanyuk E. V., Kudinov V. A., “Poluchenie priblizhennykh analiticheskikh reshenii pri rassoglasovanii nachalnykh i granichnykh uslovii v zadachakh teorii teploprovodnosti”, Izv. vuzov. Matem., 2010, no. 4, 63–71 | MR | Zbl

[10] Kantorovich L. V., “Ob odnom metode priblizhennogo resheniya differentsialnykh uravnenii v chastnykh proizvodnykh”, DAN SSSR, 2:9 (1934), 532–536

[11] Fedorov F. M., Granichnyi metod resheniya prikladnykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 2000