On the mappings of plane domains by solutions to second order elliptic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 27-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the sufficient conditions, under which the solution to second order partial differential equation will be one-to-one in a plane Jordan domain. It is proved that if a function maps a boundary of Jordan domain to rectifiable boundary of the other Jordan domain continuously, one-to-one and keeping an orientation and the Cauchy integral with this measure function is bounded by defined constant in the exterior domain, then the solution to Dirichlet problem with boundary function in this domain maps these domains one-to-one. In the proof of the main result we use integral representations of solutions to equation, particularly, properties of Fredholm type integral equations on the boundary of domain.
Mots-clés : elliptic operator, Jordan domain, Dirichlet problem, biunique mapping.
@article{IVM_2018_8_a3,
     author = {A. B. Zaitsev},
     title = {On the mappings of plane domains by solutions to second order elliptic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--32},
     publisher = {mathdoc},
     number = {8},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a3/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - On the mappings of plane domains by solutions to second order elliptic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 27
EP  - 32
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a3/
LA  - ru
ID  - IVM_2018_8_a3
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T On the mappings of plane domains by solutions to second order elliptic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 27-32
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a3/
%G ru
%F IVM_2018_8_a3
A. B. Zaitsev. On the mappings of plane domains by solutions to second order elliptic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 27-32. https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a3/

[1] Verchota G. C., Vogel A. L., “Nonsymmetric sistems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl

[2] Duren P., Harmonic mappings in the plane, Cambridge University Press, 2004 | MR | Zbl

[3] Alessandrini G., Nesi V., “Elliptic systems and material interpenetration”, Funct. Approx. Comment. Math., 40:1 (2009), 105–115 | DOI | MR | Zbl

[4] Zaitsev A. B., “O vzaimnoi odnoznachnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v edinichnom kruge na ploskosti”, Zap. nauchn. sem. POMI, 434, 2015, 91–100

[5] Zaitsev A. B., “Ob otobrazheniyakh resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. zametki, 95:5 (2014), 718–733 | DOI | Zbl

[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR