On symmetric spaces with convergence in measure on reflexive subspaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

A closed subspace H of a symmetric space X on [0,1] is said to be strongly embedded in X if in H a convergence in X-norm is equivalent to the convergence in Lebesgue measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analog of the classical Dunford–Pettis theorem of relatively weakly compact subsets in L1. At the same time the converse assertion fails for a wide class of separable Marcinkiewicz spaces.
Mots-clés : symmetric spaces, reflexive subspace, Marcinkiewicz space, equicontinuity of norms.
@article{IVM_2018_8_a0,
     author = {S. V. Astashkin and S. I. Strakhov},
     title = {On symmetric spaces with convergence in measure on reflexive subspaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {8},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - S. I. Strakhov
TI  - On symmetric spaces with convergence in measure on reflexive subspaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 3
EP  - 11
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a0/
LA  - ru
ID  - IVM_2018_8_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A S. I. Strakhov
%T On symmetric spaces with convergence in measure on reflexive subspaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 3-11
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a0/
%G ru
%F IVM_2018_8_a0
S. V. Astashkin; S. I. Strakhov. On symmetric spaces with convergence in measure on reflexive subspaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 3-11. https://geodesic-test.mathdoc.fr/item/IVM_2018_8_a0/

[1] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR

[2] Albiac F., Kalton N. J., Topics in Banach space theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006 | MR | Zbl

[3] Rudin W., “Trigonometric series with gaps”, J. Math. Mech., 9 (1960), 203–227 | MR | Zbl

[4] Blei R., Analysis in integer and fractional dimensions, Cambridge Stud. in Advanced Math., 71, Cambridge Univ. Press, Cambridge, UK, 2001 | MR | Zbl

[5] Bourgain J., “Bounded orthogonal systems and the $\Lambda(p)$-set problem”, Acta Math., 162 (1989), 227–245 | DOI | MR | Zbl

[6] Bachelis G. F., Ebenstein S. E., “On $\Lambda(p)$ sets”, Pacific J. Math., 54:1 (1974), 35–38 | DOI | MR | Zbl

[7] Astashkin S. V., “$\Lambda(p)$-spaces”, J. Funct. Anal., 266 (2014), 5174–5198 | DOI | MR | Zbl

[8] Lavergne E., “Reflexive subspaces of some Orlicz spaces”, Colloquium Math., 113:2 (2008), 333–340 | DOI | MR | Zbl

[9] Alexopoulos J., “De la {V}allée {P}oussin's theorem and weakly compact sets in {O}rlicz spaces”, Quaest. Math., 17:2 (1994), 231–248 | DOI | MR | Zbl

[10] Astashkin S. V., Kalton N. J., Sukochev F. A., “Cesaro mean convergence of martingale differences in rearrangement invariant spaces”, Positivity, 12 (2008), 387–406 | DOI | MR | Zbl

[11] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[12] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Function spaces, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[13] Astashkin S. V., Sistema Rademakhera v funktsionalnykh prostranstvakh, Fizmatlit, M., 2017

[14] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977

[15] Novikov S. Ya., Geometricheskie svoistva simmetrichnykh prostranstv, Diss. ...kand. fiz.-matem. nauk, Voronezh, 1980

[16] Novikov S. Ya., Semenov E. M., Tokarev E. V., “Struktura podprostranstv prostranstv $\Lambda_p(\varphi)$”, DAN SSSR, 247:3 (1979), 552–554 | Zbl

[17] Kadec M. I. Pełczyński A., “Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$”, Studia Math., 21 (1962), 161–176 | DOI | MR | Zbl

[18] Tokarev E. V., “O podprostranstvakh nekotorykh simmetrichnykh prostranstv”, Sb. nauchn. tr., Teor. funkts., funktsional. anal. i ikh prilozh., 24, Kharkov, 1975, 156–161 | Zbl

[19] Novikov S. Ya., “Ob odnoi kharakteristike podprostranstv simmetrichnogo prostranstva”, Issledov. po teor. funkts. mnogikh veschestvennykh peremennykh, Sb. nauchn. tr., Izd-vo Yaroslavsk. gos. un-ta, Yaroslavl, 1980, 140–148