Non-contradictory aggregations of relations of strict order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 71-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of collective choice. The profile of experts' individual preferences is given by relations of strict order. Nonconflicting aggregated relation is based on the weighted majority graph characterizing the degree of superiority of one alternative over another. Aggregated relation is also a strict order and complies to the requirements to group decisions: the monotony, the minimality of distance to the expert preferences, adherence the Pareto relation.
Mots-clés : collective choice, majority graph, aggregated relation, strict order, minimum distance, monotony, Pareto relation.
@article{IVM_2018_5_a8,
     author = {V. N. Nefyodov and V. A. Osipova and S. O. Smerchinskaya and N. P. Yashina},
     title = {Non-contradictory aggregations of relations of strict order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--85},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a8/}
}
TY  - JOUR
AU  - V. N. Nefyodov
AU  - V. A. Osipova
AU  - S. O. Smerchinskaya
AU  - N. P. Yashina
TI  - Non-contradictory aggregations of relations of strict order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 71
EP  - 85
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a8/
LA  - ru
ID  - IVM_2018_5_a8
ER  - 
%0 Journal Article
%A V. N. Nefyodov
%A V. A. Osipova
%A S. O. Smerchinskaya
%A N. P. Yashina
%T Non-contradictory aggregations of relations of strict order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 71-85
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a8/
%G ru
%F IVM_2018_5_a8
V. N. Nefyodov; V. A. Osipova; S. O. Smerchinskaya; N. P. Yashina. Non-contradictory aggregations of relations of strict order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 71-85. https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a8/

[1] Mirkin B. G., Problema gruppovogo vybora, Nauka, M., 1974

[2] Errou K. Dzh., Kollektivnyi vybor i individualnye tsennosti, Per. s angl. pod red. F. T. Aleskerova, Izdatelskii dom GU-VShE, M., 2004

[3] Volskii V. I., Lezina Z. M., Golosovanie v malykh gruppakh: protsedury i metody sravnitelnogo analiza, Nauka, M., 1991

[4] Osipova V. A., Podinovskii V. V., Yashina N. P., “O neprotivorechivom rasshirenii otnoshenii predpochteniya v zadachakh prinyatiya reshenii”, Zhurn. vychisl. matem. i matem. fiz., 24:6 (1984), 831—839 | MR

[5] Aleskerov F., Monjardet B., Utility maximization. Choice and preference, Springer, Berlin, 2002 | MR

[6] Social choice theory. The Stanford encyclopedia, , 2013, First published Wed Dec 18 https://plato.stanford.edu/entries/social-choice/

[7] Osipova V. A., Kurs diskretnoi matematiki, Forum, M., 2013

[8] Smerchinskaya C. O., Yashina N. P., “Postroenie agregirovannogo otnosheniya predpochteniya na osnove nagruzhennogo mazhoritarnogo grafa”, Elektronnyi zhurnal Tr. MAI, 39 (2010)

[9] Shreider Yu. A., Ravenstvo, skhodstvo, poryadok, Nauka, M., 1971

[10] Smerchinskaya C. O., Yashina N. P., “Analiz kompetentnosti ekspertov v zadachakh gruppovogo vybora”, Informatsionnye i telekommunikatsionnye tekhnologii, 15 (2012), 103—115