On the lattice of overcommutative varieties of monoids
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 28-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the lattice of varieties of monoids, i. e., algebras with two operations, namely an associative binary operation and a 0-ary operation that fixes the neutral element. It was unknown so far, whether this lattice satisfies some non-trivial identity. The objective of this note is to give the negative answer to this question. Namely, we prove that any finite lattice is a homomorphic image of some sublattice of the lattice of overcommutative varieties of monoids (i.e., varieties that contain the variety of all commutative monoids). This implies that the lattice of overcommutative varieties of monoids, and therefore, the lattice of all varieties of monoids does not satisfy any non-trivial identity.
Mots-clés : monoid, variety, lattice of varieties.
@article{IVM_2018_5_a3,
     author = {S. V. Gusev},
     title = {On the lattice of overcommutative varieties of monoids},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--32},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a3/}
}
TY  - JOUR
AU  - S. V. Gusev
TI  - On the lattice of overcommutative varieties of monoids
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 28
EP  - 32
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a3/
LA  - ru
ID  - IVM_2018_5_a3
ER  - 
%0 Journal Article
%A S. V. Gusev
%T On the lattice of overcommutative varieties of monoids
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 28-32
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a3/
%G ru
%F IVM_2018_5_a3
S. V. Gusev. On the lattice of overcommutative varieties of monoids. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 28-32. https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a3/

[1] Head T. J., “The varieties of commutative monoids”, Nieuw Arch. Wiskunde. III Ser., 16:3 (1968), 203–206 | MR

[2] Wismath S. L., “The lattice of varieties and pseudovarieties of band monoids”, Semigroup Forum, 33:1 (1986), 187–196 | DOI | MR

[3] Pollák G., “Some lattices of varieties containing elements without cover”, Quad. Ric. Sci., 109 (1981), 91–96 | MR

[4] Jackson M., Lee E. W.H., Monoid varieties with extreme properties, 25 pp., arXiv: 1511.08239 [math.GR]

[5] Lee E. W.H., “Inherently non-finitely generated varieties of aperiodic monoids with central idempotents”, Zap. nauchn. semin. POMI, 423, 2014, 166–182 | MR

[6] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2009, no. 3, 3–36

[7] Burris S., Nelson E., “Embedding the dual of $\Pi_\infty$ in the lattice of equational classes of semigroups”, Algebra Universalis, 1:2 (1971), 248–254 | DOI | MR

[8] Burris S., Nelson E., “Embedding the dual of $\Pi_m$ in the lattice of equational classes of commutative semigroups”, Proc. Amer. Math. Soc., 30:1 (1971), 37–39 | MR

[9] Volkov M. V., “Young diagrams and the structure of the lattice of overcommutative semigroup varieties”, Transformation Semigroups, Proc. Int. Conf. Held at the Univ. Essex (Colchester, Univ. of Essex), ed. P. Higgins, 1994, 99–110 | MR

[10] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982

[11] Shaprynskii V. Yu., “Periodichnost spetsialnykh elementov reshetki mnogoobrazii polugrupp”, Tr. In-ta matem. i mekhan. UrO RAN, 18, no. 3, 2012, 282–286