Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_5_a3, author = {S. V. Gusev}, title = {On the lattice of overcommutative varieties of monoids}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {28--32}, publisher = {mathdoc}, number = {5}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a3/} }
S. V. Gusev. On the lattice of overcommutative varieties of monoids. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 28-32. https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a3/
[1] Head T. J., “The varieties of commutative monoids”, Nieuw Arch. Wiskunde. III Ser., 16:3 (1968), 203–206 | MR
[2] Wismath S. L., “The lattice of varieties and pseudovarieties of band monoids”, Semigroup Forum, 33:1 (1986), 187–196 | DOI | MR
[3] Pollák G., “Some lattices of varieties containing elements without cover”, Quad. Ric. Sci., 109 (1981), 91–96 | MR
[4] Jackson M., Lee E. W.H., Monoid varieties with extreme properties, 25 pp., arXiv: 1511.08239 [math.GR]
[5] Lee E. W.H., “Inherently non-finitely generated varieties of aperiodic monoids with central idempotents”, Zap. nauchn. semin. POMI, 423, 2014, 166–182 | MR
[6] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2009, no. 3, 3–36
[7] Burris S., Nelson E., “Embedding the dual of $\Pi_\infty$ in the lattice of equational classes of semigroups”, Algebra Universalis, 1:2 (1971), 248–254 | DOI | MR
[8] Burris S., Nelson E., “Embedding the dual of $\Pi_m$ in the lattice of equational classes of commutative semigroups”, Proc. Amer. Math. Soc., 30:1 (1971), 37–39 | MR
[9] Volkov M. V., “Young diagrams and the structure of the lattice of overcommutative semigroup varieties”, Transformation Semigroups, Proc. Int. Conf. Held at the Univ. Essex (Colchester, Univ. of Essex), ed. P. Higgins, 1994, 99–110 | MR
[10] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982
[11] Shaprynskii V. Yu., “Periodichnost spetsialnykh elementov reshetki mnogoobrazii polugrupp”, Tr. In-ta matem. i mekhan. UrO RAN, 18, no. 3, 2012, 282–286