Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_5_a10, author = {K. M. Chudinov}, title = {On exact sufficient conditions of oscillation of solutions to linear differential and difference equations of the first order with aftereffect}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {93--98}, publisher = {mathdoc}, number = {5}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a10/} }
TY - JOUR AU - K. M. Chudinov TI - On exact sufficient conditions of oscillation of solutions to linear differential and difference equations of the first order with aftereffect JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 93 EP - 98 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a10/ LA - ru ID - IVM_2018_5_a10 ER -
%0 Journal Article %A K. M. Chudinov %T On exact sufficient conditions of oscillation of solutions to linear differential and difference equations of the first order with aftereffect %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 93-98 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a10/ %G ru %F IVM_2018_5_a10
K. M. Chudinov. On exact sufficient conditions of oscillation of solutions to linear differential and difference equations of the first order with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 93-98. https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a10/
[1] Myshkis A. D., “O resheniyakh lineinykh odnorodnykh differentsialnykh uravnenii pervogo poryadka ustoichivogo tipa s zapazdyvayuschim argumentom”, Matem. sb., 28:3 (1951), 641–658
[2] Ladas G., “Sharp conditions for oscillations caused by delays”, Appl. Anal., 9:2 (1979), 93–98 | DOI | MR
[3] Koplatadze R. G., Chanturiya T. A., “Kolebaniya i monotonnye resheniya differentsialnykh uravnenii pervogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 18:8 (1982), 1463–1465 | MR
[4] Ladas G., Lakshmikantham V., Papadakis J. S., “Oscillations of higher-order retarded differential equations generated by the retarded argument”, Delay and functional differential equations and their applications, Proc. Conf. (Park City, Utah), Academic Press, N. Y., 1972, 219–231 | DOI | MR
[5] Tramov M. I., “Usloviya koleblemosti reshenii differentsialnykh uravnenii pervogo poryadka s zapazdyvayuschim argumentom”, Izv. vuzov. Matem., 1975, no. 3, 92–96
[6] Ladde G. S., Lakshmikantham V., Zhang B. G., Oscillation theory of differential equations with deviating arguments, Marcel Dekker, New York, 1987 | MR
[7] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991
[8] Chudinov K., “Note on oscillation conditions for first-order delay differential equations”, Electron. J. Qual. Theory Diff. Eq., 2016, 2, 10 pp. | MR
[9] Zhang B. G., Tian Ch. J., “Nonexistence and existence of positive solutions for difference equations with unbounded delay”, Comput. Math. Appl., 36:1 (1998), 1–8 | DOI | MR
[10] Chatzarakis G. E., Koplatadze R., Stavroulakis I. P., “Optimal oscillation criteria for first order difference equations with delay argument”, Pacific J. Math., 235:1 (2008), 15–33 | DOI | MR
[11] Chatzarakis G. E., Koplatadze R., Stavroulakis I. P., “Oscillation criteria of first order linear difference equations with delay argument”, Nonlinear Anal., 68:4 (2008), 994–1005 | DOI | MR
[12] Fukagai N., Kusano T., “Oscillation theory of first order functional-differential equations with deviating arguments”, Ann. Mat. Pura Appl., 136:4 (1984), 95–117 | DOI | MR
[13] Grammatikopoulos M. K., Koplatadze R., Stavroulakis I. P., “On the oscillation of solutions of first order differential equations with retarded arguments”, Georgian Math. J., 10:1 (2003), 63–76 | MR
[14] Li B., “Oscillation of first order delay differential equations”, Proc. Amer. Math. Soc., 124:12 (1996), 3729–3737 | DOI | MR
[15] Stavroulakis I. P., “Oscillation criteria for delay and difference equations with non-monotone arguments”, Appl. Math. Comput., 226 (2014), 661–672 | MR
[16] Stavroulakis I. P., “Oscillations of delay and difference equations with variable coefficients and arguments”, Differential and difference equations with applications, Springer Proceedings in Mathematics Statistics, 164, 2016, 169–189 | DOI | MR
[17] Koplatadze R., Pinelas S., “Oscillation criteria for first-order linear difference equation with several delay arguments”, NelīnīĭnīKoliv., 17:2 (2014), 248–267 | MR
[18] Tang X. H., Yu J. S., “Oscillation of delay difference equation”, Comput. Math. Appl., 37:7 (1999), 11–20 | DOI | MR
[19] Chatzarakis G. E., Pinelas S., Stavroulakis I. P., “Oscillations of difference equations with several deviated arguments”, Aequationes Math., 88:1–2 (2014), 105–123 | DOI | MR
[20] Braverman E., Chatzarakis G. E., Stavroulakis I. P., “Iterative oscillation tests for difference equations with several non-monotone arguments”, J. Diff. Equat. Appl., 21:9 (2015), 854–874 | DOI | MR
[21] Braverman E., Chatzarakis G. E., Stavroulakis I. P., “Corrigendum to: Braverman E., Chatzarakis G. E., Stavroulakis I. P., Iterative oscillation tests for difference equations with several non-monotone arguments”, J. Diff. Equat. Appl., 21:9 (2015), 854–874 ; J. Diff. Equat. Appl., 2017 | DOI | MR | DOI