Paranormal elements in normed algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 13-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a normed algebra A and natural numbers k we introduce and investigate the -closed classes Pk(A). We show that P1(A) is a subset of Pk(A) for all k. If T in P1(A), then Tn lies in P1(A) for all natural n. If A is unital, U,VA are such that U=V=1, VU=I and T lies in Pk(A), then UTV lies in Pk(A) for all natural k. Let A be unital, then 1) if an element T in P1(A) is right invertible, then the right inverse element T1 lies in P1(A); 2) for I=1 the class P1(A) consists of normaloid elements; 3) if the spectrum of an element T in P1(A) lies on the unit circle, then TX=X for all XA. If A=B(H), then the class P1(A) coincides with the set of all paranormal operators on a Hilbert space H.
Mots-clés : Hilbert space, C-algebra, paranormal operator, quasinilpotent operator, isometry, hyponormal operator, normaloid operator, normed algebra, unital algebra.
@article{IVM_2018_5_a1,
     author = {A. M. Bikchentaev and S. A. Abed},
     title = {Paranormal elements in normed algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--19},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
AU  - S. A. Abed
TI  - Paranormal elements in normed algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 13
EP  - 19
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a1/
LA  - ru
ID  - IVM_2018_5_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%A S. A. Abed
%T Paranormal elements in normed algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 13-19
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a1/
%G ru
%F IVM_2018_5_a1
A. M. Bikchentaev; S. A. Abed. Paranormal elements in normed algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 13-19. https://geodesic-test.mathdoc.fr/item/IVM_2018_5_a1/

[1] Bikchentaev A. M., “O normalnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k polukonechnoi algebre fon Neimana”, Matem. zametki, 96:3 (2014), 350–360 | DOI

[2] Akhramovich M. V., Muratov M. A., Shulman V. S., “Teorema Fuglida–Patnema v algebrakh s involyutsiyami”, Matem. zametki, 98:4 (2015), 483–497 | DOI | MR

[3] Bikchentaev A. M., “Ob idempotentnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k algebre fon Neimana”, Matem. zametki, 100:4 (2016), 492–503 | DOI

[4] Aleksandrov A. B., Peller V. V., “Formula sledov Kreina dlya unitarnykh operatorov i operatorno lipshitsevy funktsii”, Funkts. analiz i ego prilozh., 50:3 (2016), 1–11 | DOI

[5] Bikchentaev A. M., “Raznosti idempotentov v $C^*$-algebrakh”, Sib. matem. zhurn., 58:2 (2017), 183–189

[6] Burbaki N., Spektralnaya teoriya, Mir, M., 1972

[7] Istrăţescu V., “On some hyponormal operators”, Pacific J. Math., 22:3 (1967), 413–417 | DOI | MR

[8] Furuta T., “On the class of paranormal operators”, Proc. Japan Acad., 43:7 (1967), 594–598 | DOI | MR

[9] Kubrusly C. S., Hilbert space operators. A problem solving approach, Birkhäuser Boston, Inc., Boston, MA, 2003 | MR

[10] Bikchentaev A. M., “Dva klassa $\tau$-izmerimykh operatorov, prisoedinennykh k algebre fon Neimana”, Izv. vuzov. Matem., 2017, no. 1, 86–91

[11] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970

[12] Istrăţescu V., Saito T., Yoshino T., “On a class of operators”, Tôhoku Math. J., 18:4 (1966), 410–413 | DOI | MR

[13] Furuta T., Horie M., Nakamoto R., “A remark on a class of operators”, Proc. Japan Acad., 43:7 (1967), 607–609 | DOI | MR