Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_4_a3, author = {V. V. Gorbatsevich}, title = {Foundations of a theory of dual {Lie} algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--48}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_4_a3/} }
V. V. Gorbatsevich. Foundations of a theory of dual Lie algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2018), pp. 33-48. https://geodesic-test.mathdoc.fr/item/IVM_2018_4_a3/
[1] Ibragimov N. H., CRC handbook of Lie group analysis of differential equations, v. 3, New trends in theoretical development and computational methods, CRC Press, FL, 1996 | MR | Zbl
[2] Gazizov R. K., Lukaschuk V. O., “Klassifikatsii priblizhennykh algebr Li s tremya suschestvennymi vektorami”, Izv. vuzov. Matem., 2010, no. 10, 3–17 | Zbl
[3] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004 | MR
[4] Dixmier J., “Cohomologie des algebres de Lie nilpotentes”, Acta Sci. Math., 16 (1955), 246–250 | MR | Zbl
[5] Gazizov R. K., Lukaschuk V. O., “Klassifikatsiya nepodobnykh priblizhennykh algebr Li s dvumya suschestvennymi simmetriyami na ploskosti”, Tr. pyatoi Vserossiiskoi nauchn. konf. s mezhdunar. uchastiem (29–31 maya 2008 g.), v. 3, Matem. modelirovanie i kraev. zadachi, Differents. uravneniya i kraevye zadachi, SamGTU, Samara, 1–12
[6] Magnin L., “Adjoint and trivial cohomologies of nilpotent complex Lie algebras of dimension $ \le 7$”, Int. J. Math. and Math. Sci., 2008 (1988), 436–450 | MR
[7] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Priblizhennye simmetrii”, Matem. sb., 136 (1988), 436–450
[8] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Priblizhennye gruppy preobrazovanii”, Differents. uravneniya, 29 (1993), 1712–1732 | Zbl