Weak solvability of Kelvin--Voigt model of thermoviscoelasticity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 91-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper announces the existence of weak solutions of initial-boundary value problem for thermoviscoelasticity of one mathematical Kelvin-Voigt model which describes motion of weakly concentrated aqueous polymer solutions.
Mots-clés : weak solution, theorem of existence, thermoviscoelasticity.
@article{IVM_2018_3_a9,
     author = {A. V. Zvyagin},
     title = {Weak solvability of {Kelvin--Voigt} model of thermoviscoelasticity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {91--95},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a9/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - Weak solvability of Kelvin--Voigt model of thermoviscoelasticity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 91
EP  - 95
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a9/
LA  - ru
ID  - IVM_2018_3_a9
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T Weak solvability of Kelvin--Voigt model of thermoviscoelasticity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 91-95
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a9/
%G ru
%F IVM_2018_3_a9
A. V. Zvyagin. Weak solvability of Kelvin--Voigt model of thermoviscoelasticity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 91-95. https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a9/

[1] Pavlovskii V. A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, DAN SSSR, 200:4 (1971), 809–812

[2] Amfilokhiev V. B. i dr., “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Tr. Leningradsk. ordena Lenina korablestroitelnogo instituta, 96 (1975), 3–9

[3] Zvyagin V. G., Turbin M. V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND (URSS), M., 2012

[4] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983

[5] Zvyagin A. V., Orlov V. P., “Razreshimost zadachi termovyazkouprugosti dlya odnoi modeli Oskolkova”, Izv. vuzov. Matem., 2014, no. 9, 69–74

[6] Zvyagin A. V., Orlov V. P., “Issledovanie razreshimosti zadachi termovyazkouprugosti dlya lineino uprugo-zapazdyvayuschei zhidkosti Foigta”, Matem. zametki, 97:5 (2015), 681–698 | DOI | Zbl

[7] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981

[8] Fursikov A.V, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i pril., Nauchn. kniga, Novosibirsk, 1999

[9] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki, Editorial URSS, M., 2004

[10] Zvyagin V. G., Vorotnikov D. A., Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, Walter de Gruyter, Berlin–New York, 2008 | MR

[11] Zvyagin V. G., Orlov V. P., “Solvability of a parabolic problem with non-smooth data”, J. Math. Anal. Appl., 453:1 (2017), 589–606 | DOI | MR | Zbl

[12] Zvyagin V. G., Orlov V. P., “On certain mathematical models in continuum thermomechanics”, J. Fixed Point Theory Appl., 15:1 (2014), 3–47 | DOI | MR | Zbl