On integration of Korteweg--de Vries equation in a class of rapidly decreasing complex-valued functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 79-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the inverse scattering method to the integration of the Korteweg-de Vries equation with self-consistent source in the class of complex-valued rapidly decreasing functions.
Mots-clés : Korteweg-de Vries equation, Sturm–Liouville operator, Jost solutions, inverse scattering problem, Gelfand–Levitan–Marchenko integral equation.
@article{IVM_2018_3_a8,
     author = {A. B. Khasanov and U. A. Khoitmetov},
     title = {On integration of {Korteweg--de} {Vries} equation in a class of rapidly decreasing complex-valued functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--90},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a8/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - U. A. Khoitmetov
TI  - On integration of Korteweg--de Vries equation in a class of rapidly decreasing complex-valued functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 79
EP  - 90
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a8/
LA  - ru
ID  - IVM_2018_3_a8
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A U. A. Khoitmetov
%T On integration of Korteweg--de Vries equation in a class of rapidly decreasing complex-valued functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 79-90
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a8/
%G ru
%F IVM_2018_3_a8
A. B. Khasanov; U. A. Khoitmetov. On integration of Korteweg--de Vries equation in a class of rapidly decreasing complex-valued functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 79-90. https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a8/

[1] Gardner C. S., Green I. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | MR

[2] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4(88) (1959), 57–119 | Zbl

[3] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977

[4] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984

[5] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure and Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[6] Mel'nikov V. K., “Exact solutions of the Kortewed–de Vries equation with a selfconsistent source”, Phys. Lett. A, 128:9 (1988), 488–492 | DOI | MR

[7] Blaschak V. A., “Analog obratnoi zadachi teorii rasseyaniya dlya nesamosopryazhennogo operatora I”, Differents. uravneniya, 4:8 (1968), 1519–1533 | Zbl

[8] Blaschak V. A., “Analog obratnoi zadachi teorii rasseyaniya dlya nesamosopryazhennogo operatora II”, Differents. uravneniya, 4:10 (1968), 1915–1924 | Zbl

[9] Naimark M. A., “Issledovanie spektra i razlozhenie po sobstvennym funktsiyam nesamosopryazhennogo differentsialnogo operatora $2$-go poryadka na poluosi”, Tr. MMO, 3, 1954, 181–270 | Zbl

[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[11] Fokas A. S., Ablowitz M. J., “Forced monlinear equations and the inverse scattering transform”, Stud. Appl. Math., 80:3 (1989), 253–272 | DOI | MR | Zbl