Vector-valued functions generated by the operator of finite order and their application to solving operator equations in locally convex spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to solving some classes of operator equations, based on the solution of auxiliary one-parameter family of equations, which is obtained from the original operator equation by formal replacement of the operator of the integrated parameter. Solutions are vector-valued functions represented by power series or integral. We investigate some properties of these solutions, namely, growth characteristics, the domain of analyticity. The investigation is realized by means of order and type of operator, operator order and operator type of the vector relative to the operator.
Mots-clés : locally convex space, order and type of operators, vector-valued functions, differential-operator equation.
@article{IVM_2018_3_a4,
     author = {S. N. Man'ko},
     title = {Vector-valued functions generated by the operator of finite order and their application to solving operator equations in locally convex spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--52},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a4/}
}
TY  - JOUR
AU  - S. N. Man'ko
TI  - Vector-valued functions generated by the operator of finite order and their application to solving operator equations in locally convex spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 41
EP  - 52
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a4/
LA  - ru
ID  - IVM_2018_3_a4
ER  - 
%0 Journal Article
%A S. N. Man'ko
%T Vector-valued functions generated by the operator of finite order and their application to solving operator equations in locally convex spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 41-52
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a4/
%G ru
%F IVM_2018_3_a4
S. N. Man'ko. Vector-valued functions generated by the operator of finite order and their application to solving operator equations in locally convex spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 41-52. https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a4/

[1] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995

[2] Gromov V. P., “Poryadok i tip lineinogo operatora i razlozheniya v ryad po sobstvennym funktsiyam”, DAN SSSR, 228:1 (1986), 27–31

[3] Gromov V. P., “Zadacha Koshi dlya uravnenii v svertkakh v prostranstvakh analiticheskikh vektornoznachnykh funktsii”, Matem. zametki, 82:2 (2007), 190–200 | DOI | Zbl

[4] Gromov V. P., Mishin S. N., Panyushkin S. V., Operatory konechnogo poryadka i differentsialno-operatornye uravneniya, OGU, Orel, 2009

[5] Aksenov N. A., Primenenie teorii poryadka i tipa operatora v lokalno vypuklykh prostranstvakh k issledovaniyu analiticheskikh zadach dlya differentsialno-operatornykh uravnenii, Dis. $\dotsc$ kand. fiz.-matem. nauk, Orel, 2011

[6] Mishin S. N., “O kharakteristikakh rosta tseloi funktsii”, Uchen. zap. Orlovsk. gos. un-ta. Ser. estestv., tekhn. i meditsinskie nauki, 1999, no. 1, 95–103

[7] Le Khai Khoi, Vektornoznachnye funktsii i differentsialnye operatory beskonechnogo poryadka, RGU, Rostov-na-Donu, 1981

[8] Gromov V. P., “Analiticheskie resheniya differentsialno-operatornykh uravnenii v lokalno vypuklykh prostranstvakh”, Dokl. RAN, 394:3 (2004), 305–308 | MR | Zbl

[9] Radyno Ya. V., “Lineinye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh. I. Regulyarnye operatory i ikh svoistva”, Differents. uravneniya, 13:8 (1977), 1402–1410 | Zbl

[10] Ivanov K. S., “Oblast analitichnosti vektornoznachnykh funktsii, porozhdennykh regulyarnym operatorom”, Vestn. RUDN. Ser. Matem., informatika, fizika, 2010, no. 4, 48–54 | MR