Integral representations for solutions of some types of the Beltrami equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 23-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain integral representations for solutions of some types of the Beltrami equations. This representations allow us to prove analogs of some classical complex analysis for these solutions.
Mots-clés : Beltrami equation, integral representation, Liuoville theorem, removable set.
@article{IVM_2018_3_a2,
     author = {D. B. Katz and B. A. Kats},
     title = {Integral representations for solutions of some types of the {Beltrami} equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--28},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a2/}
}
TY  - JOUR
AU  - D. B. Katz
AU  - B. A. Kats
TI  - Integral representations for solutions of some types of the Beltrami equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 23
EP  - 28
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a2/
LA  - ru
ID  - IVM_2018_3_a2
ER  - 
%0 Journal Article
%A D. B. Katz
%A B. A. Kats
%T Integral representations for solutions of some types of the Beltrami equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 23-28
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a2/
%G ru
%F IVM_2018_3_a2
D. B. Katz; B. A. Kats. Integral representations for solutions of some types of the Beltrami equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 23-28. https://geodesic-test.mathdoc.fr/item/IVM_2018_3_a2/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR

[2] Bojarski B., “Old and new on Beltrami equations”, Functional analytic methods in complex anal. and appl. to partial diff. equat., Proc. ICTP, 1988, 8–19

[3] Iwaniec T., Martin G., What's new for the Beltrami equation?, Geometric Anal. and Appl., Proc. Centre Math. Appl. Australian Nation. Univ., Canberra, 39, 2001, 132–148 | MR | Zbl

[4] Tungatarov A. B., “O svoistvakh odnogo integralnogo operatora v klassakh summiruemykh funktsii”, Izv. AN Kazakhsk. SSR. Ser. fiz.-matem., 1985, no. 5, 58–62

[5] Abreu-Blaya R., Bory-Reyes J., Peña-Peña D., “On the jump problem for $\beta$-analytic functions”, Complex Var. and Elliptic Equat., 51:8–11 (2006), 763–775 | DOI | MR | Zbl

[6] Abreu Blaya R., Bory Reyes J., Peña-Peña D., Vilaire J.-M., “Riemann boundary value problem for $\beta$-analytic functions”, Internat. J. Pure Appl. Math., 42:1 (2008), 19–37 | MR

[7] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[8] Markushevich A. I., Izbrannye glavy teorii analiticheskikh funktsii, Nauka, M., 1976 | MR