On generalization of Haar system and other function systems in spaces Eφ
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider subsystems of system of Haar type and system of functions more general than the systems of contractions and displacements of one function. We obtain conditions under which these function systems are representation systems in spaces Eφ with certain restrictions on φ.
Mots-clés : generalized Orlicz spaces and classes, represantation systems, the system of contractions and displacements of one function in spaces Eφ.
@article{IVM_2018_1_a10,
     author = {V. I. Filippov},
     title = {On generalization of {Haar} system and other function systems in spaces $E_{\varphi}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2018_1_a10/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - On generalization of Haar system and other function systems in spaces $E_{\varphi}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 87
EP  - 92
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2018_1_a10/
LA  - ru
ID  - IVM_2018_1_a10
ER  - 
%0 Journal Article
%A V. I. Filippov
%T On generalization of Haar system and other function systems in spaces $E_{\varphi}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 87-92
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2018_1_a10/
%G ru
%F IVM_2018_1_a10
V. I. Filippov. On generalization of Haar system and other function systems in spaces $E_{\varphi}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 87-92. https://geodesic-test.mathdoc.fr/item/IVM_2018_1_a10/

[1] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[2] Filippov V. I., “O podsistemakh sistemy Khaara v prostranstvakh $E_{\varphi}$ s $\lim\limits_{t \to \infty} \frac{\varphi(t)}{t} =0$”, Matem. zametki, 21:6 (1992), 97–106 | MR

[3] Filippov V. I., “Linear continuous functionals and representation of functions by series in the spaces $E_{\varphi}$”, Anal. Math., 27:4 (2001), 239–260 | DOI | MR | Zbl

[4] Filippov V. I., “Sistemy predstavleniya, poluchennye iz szhatii i sdvigov odnoi funktsii v mnogomernykh prostranstvakh $E_{\varphi}$”, Izv. RAN, ser. matem., 76:6 (2012), 193–206 | DOI

[5] Filippov V. I., “On the completeness and other properties of some function system in $L_p$, $0

\infty$”, J. Approx. Theory, 94:1 (1998), 42–53 | DOI | MR | Zbl

[6] Golubov B. I., “Absolyutnaya skhodimost dvoinykh ryadov iz koeffitsientov Fure–Khaara funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 2012, no. 6, 3–13 | Zbl

[7] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987

[8] Price J. J., Zink R., “On sets of completeness for families of Haar functions”, Trans. Amer. Math. Soc., 119:2 (1965), 262–269 | DOI | MR | Zbl

[9] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 27:2 (1972), 3–52

[10] Mazur S., Orlicz W., “On some classes of linear metric spaces”, Studia Math., 17:1 (1958), 97–119 | MR | Zbl