A non-homogeneous regularized problem of dynamics of viscoelastic continuous medium
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the solvability of some non-homogeneous regularized problem of dynamics of a viscoelastic continuous medium in the planar case.
Mots-clés : viscoelastic continuous medium, a priori estimates, strong solution.
@article{IVM_2012_8_a6,
     author = {V. P. Orlov},
     title = {A non-homogeneous regularized problem of dynamics of viscoelastic continuous medium},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--64},
     publisher = {mathdoc},
     number = {8},
     year = {2012},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a6/}
}
TY  - JOUR
AU  - V. P. Orlov
TI  - A non-homogeneous regularized problem of dynamics of viscoelastic continuous medium
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 58
EP  - 64
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a6/
LA  - ru
ID  - IVM_2012_8_a6
ER  - 
%0 Journal Article
%A V. P. Orlov
%T A non-homogeneous regularized problem of dynamics of viscoelastic continuous medium
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 58-64
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a6/
%G ru
%F IVM_2012_8_a6
V. P. Orlov. A non-homogeneous regularized problem of dynamics of viscoelastic continuous medium. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 58-64. https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a6/

[1] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl

[2] Zvyagin V. G., Dmitrienko V. T., “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matem., 2004, no. 9, 24–40 | MR

[3] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[4] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[5] Sobolevskii P. E., “O drobnykh normakh v banakhovom prostranstve, porozhdennom neogranichennym operatorom”, UMN, 19:6 (1964), 219–222

[6] Orlov V. P., Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory”, Diff. and Integral Equat., 4:1 (1991), 103–115 | MR | Zbl

[7] Temam R., Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987 | MR

[8] Orlov V., “On strong solutions of regularized model of a viscoelastic medium with variable boundary”, ISRN Mathematical Physics, 2012 (2012), Article ID 407940, 19 pp. | DOI | Zbl