The weighted L1-integrability of functions and the Parseval equality with respect to multiplicative systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove necessary and sufficient conditions for the weighted L1-integrability of functions defined on [0,1) in terms of Fourier coefficients with respect to a multiplicative system of bounded type. These results are counterparts of trigonometric ones by M. and S. Izumi and M. M. Robertson.
Mots-clés : multiplicative systems of bounded type, weighted L1-integrability, generalized monotonicity.
@article{IVM_2012_8_a1,
     author = {S. S. Volosivets},
     title = {The weighted $L^1$-integrability of functions and the {Parseval} equality with respect to multiplicative systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {8},
     year = {2012},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 15
EP  - 26
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a1/
LA  - ru
ID  - IVM_2012_8_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 15-26
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a1/
%G ru
%F IVM_2012_8_a1
S. S. Volosivets. The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 15-26. https://geodesic-test.mathdoc.fr/item/IVM_2012_8_a1/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl

[2] Onneweer C. W., Waterman D., “Uniform convergence of Fourier series on groups”, Michigan J. Math., 18:3 (1971), 265–273 | DOI | MR | Zbl

[3] Leindler L., “A new class of numerical sequences and its application to sine and cosine series”, Anal. Math., 28:4 (2002), 279–286 | DOI | MR | Zbl

[4] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[5] Heywood P., “Integrability theorems for trigonometric series”, Quart. J. Math., 13:2 (1962), 172–180 | DOI | MR | Zbl

[6] Boas R. P., Integrability theorems for trigonometric transforms, Springer, N.Y., 1967 | MR | Zbl

[7] Robertson M. M., “Integrability theorems for trigonometric series and transforms”, Math. Zeitschrift, 91:1 (1966), 20–29 | DOI | MR | Zbl

[8] Izumi M., Izumi S., “Integrability theorems for Fourier series and Parseval equation”, J. Math. Anal. Appl., 18:2 (1967), 252–261 | DOI | MR | Zbl

[9] Volosivets S. S., “O nekotorykh usloviyakh v teorii ryadov po multiplikativnym sistemam”, Anal. Math., 33:3 (2007), 227–246 | DOI | MR | Zbl

[10] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981

[11] Gosselin J. A., “Convergence a. e. of Vilenkin–Fourier series”, Trans. Amer. Math. Soc., 185 (1973), 345–370 | DOI | MR

[12] Dyachenko M., Tikhonov S., “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Stud. Math., 193:3 (2009), 285–306 | DOI | MR | Zbl