Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_1_a8, author = {M. G. Plotnikov}, title = {Coefficients of convergent multiple {Haar} series}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--71}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a8/} }
M. G. Plotnikov. Coefficients of convergent multiple Haar series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 67-71. https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a8/
[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR
[2] Ash J. M., Welland G. V., “Convergence, uniqueness, and summability of multiple trigonometric series”, Trans. Amer. Math. Soc., 163:2 (1972), 401–436 | DOI | MR | Zbl
[3] Reves G. E., Szasz O., “Some theorems on double trigonometric series”, Duke Math. J., 9:4 (1942), 693–705 | DOI | MR | Zbl
[4] Cohen P. J., Topics in the theory of uniqueness of trigonometrical series, Thesis, University of Chicago, Chicago, Il., 1958 | MR | Zbl
[5] Ash J. M., Wang G., “One and two dimensional Cantor–Lebesgue type theorems”, Trans. Amer. Math. Soc., 349:4 (1997), 1663–1674 | DOI | MR | Zbl
[6] Skvortsov V. A., “O mnozhestvakh edinstvennosti dlya mnogomernykh ryadov Khaara”, Matem. zametki, 14:6 (1973), 789–798 | MR | Zbl
[7] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl
[8] Plotnikov M. G., “Recovery of the coefficients of multiple Haar and Walsh series”, Real Anal. Exchange, 33:2 (2008), 291–308 | MR | Zbl