Coefficients of convergent multiple Haar series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 67-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that if a multiple trigonometric series almost everywhere converges in the square or restricted rectangular sense to a finite function, then its coefficients grow slower than any exponential function. In this paper we prove the existence of a multiple Haar series that converges in the square or restricted rectangular sense to a finite function and contains a subsequence of coefficients that grows faster than any sequence defined an advance. Moreover, we show that for such series conditions of the Arutyunyan–Talalyan type can be violated at some points.
Mots-clés : Haar system, multiple Haar series, convergence in the square sense, convergence in the restricted rectangular sense, Cantor–Lebesgue type theorems.
@article{IVM_2012_1_a8,
     author = {M. G. Plotnikov},
     title = {Coefficients of convergent multiple {Haar} series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--71},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a8/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Coefficients of convergent multiple Haar series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 67
EP  - 71
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a8/
LA  - ru
ID  - IVM_2012_1_a8
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Coefficients of convergent multiple Haar series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 67-71
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a8/
%G ru
%F IVM_2012_1_a8
M. G. Plotnikov. Coefficients of convergent multiple Haar series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 67-71. https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a8/

[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[2] Ash J. M., Welland G. V., “Convergence, uniqueness, and summability of multiple trigonometric series”, Trans. Amer. Math. Soc., 163:2 (1972), 401–436 | DOI | MR | Zbl

[3] Reves G. E., Szasz O., “Some theorems on double trigonometric series”, Duke Math. J., 9:4 (1942), 693–705 | DOI | MR | Zbl

[4] Cohen P. J., Topics in the theory of uniqueness of trigonometrical series, Thesis, University of Chicago, Chicago, Il., 1958 | MR | Zbl

[5] Ash J. M., Wang G., “One and two dimensional Cantor–Lebesgue type theorems”, Trans. Amer. Math. Soc., 349:4 (1997), 1663–1674 | DOI | MR | Zbl

[6] Skvortsov V. A., “O mnozhestvakh edinstvennosti dlya mnogomernykh ryadov Khaara”, Matem. zametki, 14:6 (1973), 789–798 | MR | Zbl

[7] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[8] Plotnikov M. G., “Recovery of the coefficients of multiple Haar and Walsh series”, Real Anal. Exchange, 33:2 (2008), 291–308 | MR | Zbl