The Delaunay triangulation for multidimensional surfaces and its approximative properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the Delaunay triangulation for surfaces and prove an analog of the G. Voronoi empty sphere theorem. We also prove the convergence theorem for gradients of piecewise linear approximations constructed on the Delaunay triangulation for functions differentiable on smooth surfaces.
Mots-clés : simplex, triangulation, approximation of gradient.
@article{IVM_2012_1_a3,
     author = {V. A. Klyachin and A. A. Shirokii},
     title = {The {Delaunay} triangulation for multidimensional surfaces and its approximative properties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--39},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a3/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - A. A. Shirokii
TI  - The Delaunay triangulation for multidimensional surfaces and its approximative properties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 31
EP  - 39
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a3/
LA  - ru
ID  - IVM_2012_1_a3
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A A. A. Shirokii
%T The Delaunay triangulation for multidimensional surfaces and its approximative properties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 31-39
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a3/
%G ru
%F IVM_2012_1_a3
V. A. Klyachin; A. A. Shirokii. The Delaunay triangulation for multidimensional surfaces and its approximative properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 31-39. https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a3/

[1] Borovikov S. N., Ivanov I. E., Kryukov I. A., “Modelirovanie prostranstvennykh techenii idealnogo gaza s ispolzovaniem tetraedralnykh setok”, Matem. modelir., 18:8 (2006), 37–48 | Zbl

[2] Korotov S., “Some geometric results for tetrahedral finite elements”, Proc. Numgrid2010, Folium, M., 2010, 41–46

[3] Pushkina I. G., Tishkin V. F., “Adaptivnye raschetnye setki iz yacheek Dirikhle dlya resheniya zadach matematicheskoi fiziki: Metodika postroeniya, primery”, Matem. modelir., 12:3 (2000), 97–109 | MR | Zbl

[4] Rajan V. T., “Optimality of the Delaunay triangulation in $\mathbb R^d$”, Discrete Comput. Geom., 12:2 (1994), 189–202 | DOI | MR | Zbl

[5] Waldron S., “The error in linear interpolation at the vertices of a simplex”, SIAM J. Numer. Anal., 35:3 (1998), 1191–1200 | DOI | MR | Zbl

[6] Shewchuck J., “What is a good linear element?”, Interpolation, conditioning, and quality measures, Proc. Intern. Meshing Roundtable, Ithaca, New York, 2002, 115–126

[7] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Izd-vo PLATON, Volgograd, 1997

[8] Klyachin V. A., Pabat E. A., “$C^1$-approksimatsiya poverkhnostei urovnya funktsii, zadannykh na neregulyarnykh setkakh”, Sib. zhurn. ind. matem., 13:2 (2010), 69–78 | MR | Zbl

[9] Delone B. P., “O pustoi sfere. K memuaru Georgiya Voronogo”, Zap. semin. “Sverkhmedlennye protsessy”, Sb., Vyp. 1, Izd-vo VolGU, Volgograd, 2006, 147–153

[10] Klyachin V. A., “Ob odnom obobschenii usloviya Delone”, Vestn. Tomsk. un-ta, Matem. i mekh., 2008, no. 1, 48–50

[11] Edelsbrunner H., “An acyclicity theorem for cell complexes in $d$ dimensions”, Combinatorica, 10:3 (1990), 251–260 | DOI | MR | Zbl

[12] Garanzha VA., “Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra”, Zhurn. vychisl. matem. i matem. fiz., 50:1 (2010), 71–98 | MR | Zbl