Regular semiartinian rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of rings over which every right module is an essential extension of a semisimple module by an injective one. A ring R is called a right max-ring if every nonzero right R-module has a maximal submodule. We describe normal regular semiartinian rings whose endomorphism ring of the minimal injective cogenerator is a max-ring.
Mots-clés : semiartinian rings, SI-rings, injective module, max-rings.
@article{IVM_2012_1_a0,
     author = {A. N. Abyzov},
     title = {Regular semiartinian rings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Regular semiartinian rings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 11
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a0/
LA  - ru
ID  - IVM_2012_1_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Regular semiartinian rings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-11
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a0/
%G ru
%F IVM_2012_1_a0
A. N. Abyzov. Regular semiartinian rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 3-11. https://geodesic-test.mathdoc.fr/item/IVM_2012_1_a0/

[1] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[2] Dinh H. Q., Huynh D. V., “Some results on self-injective rings and $\Sigma$-CS rings”, Commun. Algebra, 31:12 (2003), 6063–6077 | DOI | MR | Zbl

[3] Shores T., “The structure of Loewy modules”, J. Reine Angew. Math., 254 (1972), 204–220 | DOI | MR | Zbl

[4] Dlab V., Ringel C. M., “A class of balanced non-uniserial rings”, Math. Ann., 195 (1972), 279–291 | DOI | MR | Zbl

[5] Kash F., Moduli i koltsa, Mir, M., 1981 | MR

[6] Koifman L. A., “Pochti-poluprostye koltsa”, Matem. sb., 83(125):1 (1970), 120–150 | MR | Zbl

[7] Cateforis V. C., Sandomierski F. L., “The singular submodule splitts off”, J. Algebra, 10:2 (1968), 149–165 | DOI | MR | Zbl

[8] Cateforis V., Sandomierski F., “On modules of singular submodule zero”, Can. J. Math., 23:2 (1971), 345–354 | DOI | MR | Zbl

[9] Goodearl K. R., Singular torsion and the splitting properties, Mem. Amer. Math. Soc., 124, 1972 | MR | Zbl

[10] Baccella G., “Representation of Artinian partially ordered sets over semiartinian von Neumann regular algebras”, J. Algebra, 323 (2010), 790–838 | DOI | MR | Zbl

[11] Brown B., McCoy N. H., “The maximal regular ideal of a ring”, Proc. Amer. Math. Soc., 1 (1950), 165–171 | DOI | MR | Zbl

[12] Nǎstǎsescu C., Popescu N., “Anneaux semi-artiniens”, Bull. Soc. Math. Franc., 96 (1968), 357–368 | MR

[13] Abyzov A. N., “Slabo regulyarnye moduli nad normalnymi koltsami”, Sib. matem. zhurn., 49:4 (2008), 721–738 | MR | Zbl

[14] Abyzov A. N., “Slabo regulyarnye moduli nad polusovershennymi koltsami”, Chebyshevskii sb., 4:1 (2003), 4–9 | MR | Zbl

[15] Abyzov A. N., Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli yavlyayutsya $I_0$-modulyami. II”, Fundament. i prikl. matem., 14:2 (2008), 3–12 | MR | Zbl

[16] Faith C., “Rings whose modules have maximal submodules”, Publ. Mat. Barc., 39:1 (1995), 201–214 | DOI | MR | Zbl

[17] Abyzov A. N., “Obobschennye $SV$-koltsa ogranichennogo indeksa nilpotentnosti”, Izv. vuzov. Matem., 2011, no. 12, 3–14

[18] Xue W., “Two questions on rings whose modules have maximal submodules”, Commun. Algebra, 28:5 (2000), 2633–2638 | DOI | MR | Zbl

[19] Fuchs L., “Torsion preradicals and ascending Loewy series of modules”, J. Reine Angew. Math., 239 (1969), 169–179 | DOI | MR | Zbl