Sets invariant under an integral constraint on controls
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the invariance of given sets with respect to a system with distributed parameters. The considered system is described by a heat conductivity equation whose right-hand side written in the additive form contains a control. For the initial data we obtain sufficient conditions for the strong and weak invariance of the set that represents the graph of a given multivalued mapping.
Mots-clés : control, weak invariance, strong invariance, concentrated parameters.
@article{IVM_2011_8_a8,
     author = {M. Tukhtasinov and U. Ibragimov},
     title = {Sets invariant under an integral constraint on controls},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--76},
     publisher = {mathdoc},
     number = {8},
     year = {2011},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a8/}
}
TY  - JOUR
AU  - M. Tukhtasinov
AU  - U. Ibragimov
TI  - Sets invariant under an integral constraint on controls
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 69
EP  - 76
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a8/
LA  - ru
ID  - IVM_2011_8_a8
ER  - 
%0 Journal Article
%A M. Tukhtasinov
%A U. Ibragimov
%T Sets invariant under an integral constraint on controls
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 69-76
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a8/
%G ru
%F IVM_2011_8_a8
M. Tukhtasinov; U. Ibragimov. Sets invariant under an integral constraint on controls. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 69-76. https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a8/

[1] Guseinov Kh. G., Ushakov V. N., “Silno i slabo invariantnye mnozhestva otnositelno differentsialnogo vklyucheniya”, DAN SSSR, 303:4 (1988), 794–796 | MR

[2] Aubin J.-P., “A survey of viability theory”, SIAM J. Control and Optim., 28:4 (1990), 749–788 | DOI | MR | Zbl

[3] Feuer A., Heymann M., “$\Omega$-invariance in control systems with bounded controls”, J. Math. Anal. Appl., 53:2 (1976), 266–276 | DOI | MR | Zbl

[4] Fazylov A. Z., “O suschestvovanii yadra vypuklogo mnozhestva v lineinykh upravlyaemykh sistemakh”, Uzb. matem. zhurn., 1992, no. 1, 51–56 | MR

[5] Fazylov A., Ibragimov U. M., “O silno invariantnykh mnozhestvakh lineinykh upravlyaemykh sistem”, Nauka i obrazov. Yuzhnogo Kazakhstana. Resp. nauchn. zhurn. Ser. matem., inform., fiz., 2003, no. 34, 130–133

[6] Haddad G., “Monotone trajectories of differential inclusions and functional differential inclusions with memory”, Israel J. Math., 39:1–2 (1981), 83–100 | DOI | MR | Zbl

[7] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shkola, M., 1977 | MR

[8] Avdonin S. A., Ivanov S. A., Upravlyaemost sistem s raspredelennymi parametrami i semeistva eksponent, UMKVO, Kiev, 1989

[9] Satimov N. Yu., Tukhtasinov M., “Ob igrovykh zadachakh dlya evolyutsionnykh uravnenii vtorogo poryadka”, Izv. vuzov. Matem., 2007, no. 1, 54–62 | MR | Zbl

[10] Osipov Yu. S., “K teorii differentsialnykh igr v sistemakh s raspredelennymi parametrami”, DAN SSSR, 223:6 (1975), 1314–1317 | MR | Zbl

[11] Tukhtasinov M., Mamatov M. Sh., “O zadachakh perekhoda v upravlyaemykh sistemakh”, Differents. uravneniya, 45:3 (2009), 425–430 | MR | Zbl