Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 56-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the nonlinear theory of shells all known existence theorems are based on the Kirchhoff–Love model. We prove a new existence theorem using the Timoshenko model.
Mots-clés : Timoshenko-type shell, equilibrium equations system, boundary-value problem, generalized shifts, generalized problem solution, integral images, Sobolev spaces, operator, integral equations, existence theorem.
@article{IVM_2011_8_a7,
     author = {S. N. Timergaliev},
     title = {Solvability of geometrically nonlinear boundary-value problems for the {Timoshenko-type} anisotropic shells with rigidly clamped edges},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--68},
     publisher = {mathdoc},
     number = {8},
     year = {2011},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 56
EP  - 68
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/
LA  - ru
ID  - IVM_2011_8_a7
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 56-68
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/
%G ru
%F IVM_2011_8_a7
S. N. Timergaliev. Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 56-68. https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR

[2] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matem., 1985, no. 10, 17–30 | MR | Zbl

[3] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1196–1203 | MR

[4] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Dis. $\dots$ d-ra f.-m. n., Kazan, 2003

[5] Timergaliev S. N., “K voprosu o razreshimosti kraevykh zadach nelineinoi teorii pologikh obolochek tipa Timoshenko”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 150, no. 1, 2008, 115–123 | Zbl

[6] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975 | MR

[7] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[8] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963 | MR

[9] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR