Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_8_a7, author = {S. N. Timergaliev}, title = {Solvability of geometrically nonlinear boundary-value problems for the {Timoshenko-type} anisotropic shells with rigidly clamped edges}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {56--68}, publisher = {mathdoc}, number = {8}, year = {2011}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/} }
TY - JOUR AU - S. N. Timergaliev TI - Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 56 EP - 68 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/ LA - ru ID - IVM_2011_8_a7 ER -
%0 Journal Article %A S. N. Timergaliev %T Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2011 %P 56-68 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/ %G ru %F IVM_2011_8_a7
S. N. Timergaliev. Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 56-68. https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a7/
[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR
[2] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matem., 1985, no. 10, 17–30 | MR | Zbl
[3] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1196–1203 | MR
[4] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Dis. $\dots$ d-ra f.-m. n., Kazan, 2003
[5] Timergaliev S. N., “K voprosu o razreshimosti kraevykh zadach nelineinoi teorii pologikh obolochek tipa Timoshenko”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 150, no. 1, 2008, 115–123 | Zbl
[6] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975 | MR
[7] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl
[8] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963 | MR
[9] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR