On -quasivarieties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 40-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of an -quasivariety and characterize -quasivarieties as classes closed with respect to certain operators.
Mots-clés : universal algebras, quasiidentities, direct limits, direct products, subalgebras.
@article{IVM_2011_8_a5,
     author = {A. G. Pinus},
     title = {On $\infty$-quasivarieties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--45},
     publisher = {mathdoc},
     number = {8},
     year = {2011},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a5/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - On $\infty$-quasivarieties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 40
EP  - 45
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a5/
LA  - ru
ID  - IVM_2011_8_a5
ER  - 
%0 Journal Article
%A A. G. Pinus
%T On $\infty$-quasivarieties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 40-45
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a5/
%G ru
%F IVM_2011_8_a5
A. G. Pinus. On $\infty$-quasivarieties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 40-45. https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a5/

[1] Pinus A. G., “Geometricheskie shkaly mnogoobrazii algebr i kvazitozhdestva”, Matem. trudy, 12:2 (2009), 160–169 | MR

[2] Gorbunov V. A., Algebraicheskaya teoriya kvazimnogoobrazii, Izd-vo “Nauchnaya kniga”, Novosibirsk, 1999

[3] Pinus A. G., “O geometricheski polnykh mnogoobraziyakh”, Vestn. Novosibirsk. un-ta (to appear)