An exact penalty method for monotone variational inequalities and order optimal algorithms for finding saddle points
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider variational inequalities in a Banach space. We propose an exact penalty method which enables one to refuse functional constraints. The obtained result is used for constructing optimal (in laboriousness) iterative schemes for finding saddle points under functional constraints.
Mots-clés : variational inequality, monotone operator, Banach space, exact penalty, saddle point, laboriousness.
@article{IVM_2011_8_a3,
     author = {M. Yu. Kokurin},
     title = {An exact penalty method for monotone variational inequalities and order optimal algorithms for finding saddle points},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--33},
     publisher = {mathdoc},
     number = {8},
     year = {2011},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a3/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - An exact penalty method for monotone variational inequalities and order optimal algorithms for finding saddle points
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 23
EP  - 33
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a3/
LA  - ru
ID  - IVM_2011_8_a3
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T An exact penalty method for monotone variational inequalities and order optimal algorithms for finding saddle points
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 23-33
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a3/
%G ru
%F IVM_2011_8_a3
M. Yu. Kokurin. An exact penalty method for monotone variational inequalities and order optimal algorithms for finding saddle points. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 23-33. https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a3/

[1] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[2] Tynyanskii N. T., Sedlovye funktsii, Izd-vo MGU, M., 1985 | MR

[3] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[4] Nemirovskii A. S., Yudin A. B., Slozhnost zadach i effektivnost metodov optimizatsii. Teoriya i metody sistemnogo analiza, Nauka, M., 1979 | MR

[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[6] Alber Ya., Ryazantseva I., Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006 | MR

[7] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976 | MR | Zbl

[8] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[9] Beresnev V. V., “Metod negladkikh shtrafov i teoriya vypuklykh ekstremalnykh zadach v banakhovom prostranstve”, Kibernetika, 1979, no. 5, 100–105 | MR | Zbl

[10] Kokurin M. Yu., Ob ispolzovanii metoda shtrafa s regulyarizatsiei dlya issledovaniya variatsionnykh neravenstv, Dep. v VINITI No 2133-V90, 1990

[11] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001 | MR

[12] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[13] Konnov I. V., Pinyagina O. V., “$D$-gap functions for a class of equilibrium problems in Banach spaces”, Comput. Methods Appl. Math., 3:2 (2003), 274–286 | MR | Zbl