Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_8_a0, author = {A. N. Abyzov}, title = {Fully idempotent homomorphisms}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--8}, publisher = {mathdoc}, number = {8}, year = {2011}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a0/} }
A. N. Abyzov. Fully idempotent homomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 3-8. https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a0/
[1] Camillo V., Xiao Y. F., “Weakly regular rings”, Commun. Algebra, 22:10 (1994), 4095–4112 | DOI | MR | Zbl
[2] Andruszkiewicz R. R., Puczyłowski E. R., “Right fully idempotent rings need not be left fully idempotent”, Glasgow Math. J., 37:2 (1995), 155–157 | DOI | MR | Zbl
[3] Ramamurthi V. S., “Weakly regular rings”, Canad. Math. Bull., 16 (1973), 317–321 | DOI | MR | Zbl
[4] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009
[5] Tuganbaev A. A., Rings close to regular, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl
[6] Tuganbaev A. A., “Semiregular, weakly regular, and $\pi$-regular rings”, J. Math. Sci. (New York), 109:3 (2002), 1509–1588 | DOI | MR | Zbl
[7] Hirano Y., “Regular modules and $V$-modules”, Hiroshima Math. J., 11:1 (1981), 125–142 | MR | Zbl
[8] Hirano Y., “Regular modules and $V$-modules. II”, Math. J. Okayama Univ., 23:2 (1981), 131–135 | MR | Zbl
[9] Ramamurthi V. S., “A note on regular modules”, Bull. Austral. Math. Soc., 11:3 (1974), 359–364 | DOI | MR | Zbl
[10] Jayaraman M., Vanaja N., “Generalization of regular modules”, Commun. Algebra, 35:11 (2007), 3331–3345 | DOI | MR | Zbl
[11] Mabuchi T., “Weakly regular modules”, Osaka J. Math., 17:1 (1980), 35–40 | MR | Zbl
[12] Zelmanowitz J., “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl
[13] Azumaya G., “Some characterizations of regular modules”, Publ. Matem. Barc., 34:2 (1990), 241–248 | MR | Zbl
[14] Nicholson W. K., Zhou Y., “Semiregular morphisms”, Commun. Algebra, 34:1 (2006), 219–233 | DOI | MR | Zbl
[15] Kasch F., Mader A., “Regularity and substructures of Hom”, Commun. Algebra, 34:4 (2006), 1459–1478 | DOI | MR | Zbl
[16] Kasch F., “Regular substructures of Hom”, Appl. Categ. Structur., 16:1–2 (2008), 159–166 | DOI | MR | Zbl
[17] Wisbauer R., Foundations of module and ring theory, A handbook for study and research. Revised and updated by Engl. ed., Gordon and Breach Science Publishers, Philadelphia, 1991 | MR | Zbl