Fully idempotent homomorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary modules A and B we introduce and study the notion of a fully idempotent Hom(A,B). As a corollary we obtain some well-known properties of fully idempotent rings and modules.
Mots-clés : fully idempotent ring, fully idempotent module, quasi-projective module, quasi-injective module.
@article{IVM_2011_8_a0,
     author = {A. N. Abyzov},
     title = {Fully idempotent homomorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {8},
     year = {2011},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Fully idempotent homomorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 8
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a0/
LA  - ru
ID  - IVM_2011_8_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Fully idempotent homomorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-8
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a0/
%G ru
%F IVM_2011_8_a0
A. N. Abyzov. Fully idempotent homomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 3-8. https://geodesic-test.mathdoc.fr/item/IVM_2011_8_a0/

[1] Camillo V., Xiao Y. F., “Weakly regular rings”, Commun. Algebra, 22:10 (1994), 4095–4112 | DOI | MR | Zbl

[2] Andruszkiewicz R. R., Puczyłowski E. R., “Right fully idempotent rings need not be left fully idempotent”, Glasgow Math. J., 37:2 (1995), 155–157 | DOI | MR | Zbl

[3] Ramamurthi V. S., “Weakly regular rings”, Canad. Math. Bull., 16 (1973), 317–321 | DOI | MR | Zbl

[4] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[5] Tuganbaev A. A., Rings close to regular, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl

[6] Tuganbaev A. A., “Semiregular, weakly regular, and $\pi$-regular rings”, J. Math. Sci. (New York), 109:3 (2002), 1509–1588 | DOI | MR | Zbl

[7] Hirano Y., “Regular modules and $V$-modules”, Hiroshima Math. J., 11:1 (1981), 125–142 | MR | Zbl

[8] Hirano Y., “Regular modules and $V$-modules. II”, Math. J. Okayama Univ., 23:2 (1981), 131–135 | MR | Zbl

[9] Ramamurthi V. S., “A note on regular modules”, Bull. Austral. Math. Soc., 11:3 (1974), 359–364 | DOI | MR | Zbl

[10] Jayaraman M., Vanaja N., “Generalization of regular modules”, Commun. Algebra, 35:11 (2007), 3331–3345 | DOI | MR | Zbl

[11] Mabuchi T., “Weakly regular modules”, Osaka J. Math., 17:1 (1980), 35–40 | MR | Zbl

[12] Zelmanowitz J., “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl

[13] Azumaya G., “Some characterizations of regular modules”, Publ. Matem. Barc., 34:2 (1990), 241–248 | MR | Zbl

[14] Nicholson W. K., Zhou Y., “Semiregular morphisms”, Commun. Algebra, 34:1 (2006), 219–233 | DOI | MR | Zbl

[15] Kasch F., Mader A., “Regularity and substructures of Hom”, Commun. Algebra, 34:4 (2006), 1459–1478 | DOI | MR | Zbl

[16] Kasch F., “Regular substructures of Hom”, Appl. Categ. Structur., 16:1–2 (2008), 159–166 | DOI | MR | Zbl

[17] Wisbauer R., Foundations of module and ring theory, A handbook for study and research. Revised and updated by Engl. ed., Gordon and Breach Science Publishers, Philadelphia, 1991 | MR | Zbl