Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_1_a7, author = {M. Kh. Faizrakhmanov}, title = {A semilattice generated by superlow computably enumerable degrees}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {85--90}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2011_1_a7/} }
M. Kh. Faizrakhmanov. A semilattice generated by superlow computably enumerable degrees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2011), pp. 85-90. https://geodesic-test.mathdoc.fr/item/IVM_2011_1_a7/
[1] Carstens H. G., “$\Delta^0_2$-Mengen”, Arch. Math. Logik Grundlagenforsch., 18 (1976), 55–65 | DOI | MR | Zbl
[2] Cholak P., Downey R., Greenberg N., “Strong jump-traceability. I. The computably enumerable case”, Adv. Math., 217:5 (2008), 2045–2074 | DOI | MR | Zbl
[3] Nies A., “Lowness properties and randomness”, Adv. Math., 197:1 (2005), 274–305 | DOI | MR | Zbl
[4] Nies A., “Reals which compute little”, Logic Colloquium' 02, Lect. Notes Log., 27, Assoc. Symbol. Logic, La Jolla, CA, 2006, 261–275 | MR | Zbl
[5] Downey R. G., Greenberg N., Weber R., “Totally $\omega$-computably enumerable degrees and bounding critical triples”, J. Math. Logic, 7:2 (2007), 145–171 | DOI | MR | Zbl
[6] Walk S., Towards a definition of the array computable degrees, Ph. D. Thesis, University of Notre Dame, 1999
[7] Sacks G. E., “On the degrees less than $\mathbf{0}'$”, Ann. Math., 2:77 (1963), 211–231 | DOI | MR | Zbl
[8] Bickford M., Mills F., Lowness properties of r. e. sets, Manuscript, University of Wisconsin-Madison, 1982
[9] Schaeffer B., “Dynamic notions of genericity and array noncomputability”, Ann. Pure Appl. Logic, 95:1–3 (1998), 37–69 | DOI | MR | Zbl
[10] Soar R. I., Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matematicheskoe o-vo, Kazan, 2000 | MR | Zbl