The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider n messages of N blocks each, where each block is encoded by some antinoise coding method. The method can correct no more than one error. We assume that the number of errors in the ith message belongs to some finite random subset of nonnegative integer numbers. Let A stand for the event that all errors are corrected; we study the probability P(A) and calculate it in terms of conditional probabilities. We prove that under certain moment conditions probabilities P(A) converge almost sure as n and N tend to infinity so that the value n/N has a finite limit. We calculate this limit explicitly.
Mots-clés : generalized allocation scheme, convergence almost sure, Hamming code.
@article{IVM_2010_8_a8,
     author = {A. N. Chuprunov and B. I. Khamdeyev},
     title = {The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--88},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a8/}
}
TY  - JOUR
AU  - A. N. Chuprunov
AU  - B. I. Khamdeyev
TI  - The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 81
EP  - 88
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a8/
LA  - ru
ID  - IVM_2010_8_a8
ER  - 
%0 Journal Article
%A A. N. Chuprunov
%A B. I. Khamdeyev
%T The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 81-88
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a8/
%G ru
%F IVM_2010_8_a8
A. N. Chuprunov; B. I. Khamdeyev. The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 81-88. https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a8/

[1] Novikov F. A., Diskretnaya matematika dlya programmistov, 2-e izd., Piter, SPb, 2004

[2] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Litovsk. matem. sb., 8:1 (1968), 53–63 | MR | Zbl

[3] Kolchin V. F., Sluchainye grafy, Fizmatgiz, M., 2000 | MR | Zbl

[4] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskret. matem., 15:4 (2003), 148–157 | MR | Zbl

[5] Kolchin A. V., Kolchin V. F., “O perekhode raspredelenii summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skheme razmescheniya”, Diskret. matem., 18:4 (2006), 113–127 | MR | Zbl

[6] Kolchin A. V., Kolchin V. F., “Perekhod s odnoi reshetki na druguyu raspredelenii summ sluchainykh velichin, vstrechayuschikhsya v obobschennoi skheme razmescheniya”, Diskret. matem., 19:3 (2007), 15–21 | MR | Zbl

[7] Avkhadiev F. G., Chuprunov A. N., “The probability of a successful allocation of ball groups by boxes”, Lobachevskii J. Math., 25 (2007), 3–7 | MR | Zbl