Generating functions for ternary algebras and ternary trees
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 69-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the ternary algebras, i.e., algebras with a trilinear operation. In this class we study finitely generated algebras and their growth, as well as the growth of codimensions of absolutely free algebras and some other varieties. To this end we use ordinary generating functions and exponential generating functions (the complexity functions). In classes of absolutely free, free symmetric, free anti-symmetric, and some other algebras we study the left-nilpotent and completely left-nilpotent algebras and subvarieties. Our results are equivalent to the enumeration of ternary trees that do not contain some forbidden subtrees of special sort. As the main result, we prove that for varieties of left-nilpotent and completely left-nilpotent ternary algebras the complexity functions are algebraic.
Mots-clés : linear algebras, trees, generating function, exponential generating function, left nilpotency.
@article{IVM_2010_8_a7,
     author = {A. D. Uadilova},
     title = {Generating functions for ternary algebras and ternary trees},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--80},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a7/}
}
TY  - JOUR
AU  - A. D. Uadilova
TI  - Generating functions for ternary algebras and ternary trees
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 69
EP  - 80
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a7/
LA  - ru
ID  - IVM_2010_8_a7
ER  - 
%0 Journal Article
%A A. D. Uadilova
%T Generating functions for ternary algebras and ternary trees
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 69-80
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a7/
%G ru
%F IVM_2010_8_a7
A. D. Uadilova. Generating functions for ternary algebras and ternary trees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 69-80. https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a7/

[1] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[2] Shirshov A. I., “Podalgebry svobodnykh kommutativnykh i svobodnykh antikommutativnykh algebr”, Matem. sb., 34(76):1 (1954), 81–88 | MR | Zbl

[3] Drensky V., Free algebras and PI-algebras, Springer-Verlag, Singapore, 2000 | MR | Zbl

[4] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[5] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[6] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR