Isoperimetric monotony of the Lp-norm of the warping function of a~plane simply connected domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let G be a simply connected domain and let u(x,G) be its warping function. We prove that Lp-norms of functions u and u1 are monotone with respect to the parameter p. This monotony also gives isoperimetric inequalities for norms that correspond to different values of the parameter p. The main result of this paper is a generalization of classical isoperimetric inequalities of St. Venant–Pólya and the Payne inequalities.
Mots-clés : torsional rigidity, isoperimetric inequalities, isoperimetric monotony, Schwarz symmetrization, Kohler-Jobin symmetrization.
@article{IVM_2010_8_a6,
     author = {R. G. Salakhudinov},
     title = {Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a6/}
}
TY  - JOUR
AU  - R. G. Salakhudinov
TI  - Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 59
EP  - 68
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a6/
LA  - ru
ID  - IVM_2010_8_a6
ER  - 
%0 Journal Article
%A R. G. Salakhudinov
%T Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 59-68
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a6/
%G ru
%F IVM_2010_8_a6
R. G. Salakhudinov. Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 59-68. https://geodesic-test.mathdoc.fr/item/IVM_2010_8_a6/

[1] Kohler-Jobin M.-Th., “Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques”, C. R. Acad. Sci. Paris Sér. A, 284:3 (1977), 917–920 | MR | Zbl

[2] Hersch J., “Isoperimetric monotonicity: some properties and conjectures (connections between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl

[3] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[4] Bañuelos R., van den Berg M., Carroll T., “Torsional rigidity and expected lifetime of Brownian motion”, J. Lond. Math. Soc. II Ser., 66:2 (2002), 499–512 | DOI | MR | Zbl

[5] Hayman W. K., “Some bounds for the principal frequency”, Appl. Anal., 7 (1978), 247–254 | DOI | MR | Zbl

[6] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl

[7] Salakhudinov R. G., “Ploschad poverkhnosti, ob'em i momenty inertsii oblasti otnositelno granitsy”, Materialy mezhdunarodn. nauch. konf. “Geometricheskaya teoriya funktsii i kraevye zadachi” (Kazan, 18–24 marta 2002), Izd-vo Kazansk. matem. o-va, Kazan, 2002, 132–136

[8] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequal. Appl., 7:4 (2002), 593–601 | DOI | MR | Zbl

[9] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1980 | MR | Zbl

[10] Kohler-Jobin M.-Th., “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, Z. Angew. Math. Phys., 32 (1981), 625–646 | DOI | MR | Zbl