The averaging method and the asymptotic behavior of solutions to differential inclusions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 26-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove one version of the first Bogolyubov theorem for differential inclusions with multivalued mappings that satisfy certain one-sided constraints. We study the dependence of solutions to differential inclusions on the parameters.
Mots-clés : averaging method, differential inclusions, asymptotic methods.
@article{IVM_2009_8_a3,
     author = {V. S. Klimov and A. Yu. Ukhalov},
     title = {The averaging method and the asymptotic behavior of solutions to differential inclusions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--36},
     publisher = {mathdoc},
     number = {8},
     year = {2009},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2009_8_a3/}
}
TY  - JOUR
AU  - V. S. Klimov
AU  - A. Yu. Ukhalov
TI  - The averaging method and the asymptotic behavior of solutions to differential inclusions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 26
EP  - 36
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2009_8_a3/
LA  - ru
ID  - IVM_2009_8_a3
ER  - 
%0 Journal Article
%A V. S. Klimov
%A A. Yu. Ukhalov
%T The averaging method and the asymptotic behavior of solutions to differential inclusions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 26-36
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2009_8_a3/
%G ru
%F IVM_2009_8_a3
V. S. Klimov; A. Yu. Ukhalov. The averaging method and the asymptotic behavior of solutions to differential inclusions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 26-36. https://geodesic-test.mathdoc.fr/item/IVM_2009_8_a3/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 503 pp. | MR

[2] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988, 512 pp. | MR

[3] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Izd-vo VGU, Voronezh, 1986, 101 pp. | MR | Zbl

[4] Ioffe A. D., Tikhomirov V. N., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl

[5] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986, 296 pp. | MR | Zbl

[6] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[7] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[8] Klimov V. S., “Usrednenie parabolicheskikh vklyuchenii”, Matem. sb., 195:1 (2004), 21–36 | MR | Zbl

[9] Akulenko L. D., Asimptoticheskie metody optimalnogo upravleniya, Nauka, M., 1987, 365 pp. | MR | Zbl