Projection methods for solving a class of singular integrodifferential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a computational scheme of the general projection method for the solution of singular integrodifferential equations in the theory of stream lines and thermal conductivity. We theoretically substantiate this scheme from the standpoint of the theory of approximate methods of functional analysis. We consider particular cases of the general projection method, namely, the method of moments and the collocation method.
Mots-clés : singular integrodifferential equations, projection method, theory of stream lines and thermal conductivity, method of moments, collocation method.
@article{IVM_2008_8_a3,
     author = {M. Yu. Pershagin},
     title = {Projection methods for solving a class of singular integrodifferential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--42},
     publisher = {mathdoc},
     number = {8},
     year = {2008},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a3/}
}
TY  - JOUR
AU  - M. Yu. Pershagin
TI  - Projection methods for solving a class of singular integrodifferential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 35
EP  - 42
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a3/
LA  - ru
ID  - IVM_2008_8_a3
ER  - 
%0 Journal Article
%A M. Yu. Pershagin
%T Projection methods for solving a class of singular integrodifferential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 35-42
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a3/
%G ru
%F IVM_2008_8_a3
M. Yu. Pershagin. Projection methods for solving a class of singular integrodifferential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 35-42. https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a3/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1968, 511 pp. | MR

[3] Michlin S. G., Prößdorf S., Singuläre Integraloperatoren, Akademik-Verlag, Berlin, 1980, 514 S. | MR | Zbl

[4] Pykhteev G. N., “Obschaya i osnovnaya kraevye zadachi ploskikh struinykh ustanovivshikhsya techenii i sootvetstvuyuschie im nelineinye uravneniya”, PMTF, 1966, no. 1, 32–34

[5] Pykhteev G. N., “Nekotorye metody resheniya odnogo nelineinogo integro-differentsialnogo uravneniya teorii strui idealnoi zhidkosti”, PMTF, 1966, no. 2, 72–86 | MR | Zbl

[6] Pykhteev G. N., “O dvukh metodakh resheniya odnoi nelineinoi kraevoi zadachi teorii strui tyazheloi zhidkosti”, Dinamika sploshnoi sredy, no. 2, Nauka, Novosibirsk, 1969, 134–144 | MR

[7] Shokamolov I. Sh., Priblizhennye metody vychisleniya integralov tipa Koshi spetsialnogo vida i reshenie odnogo singulyarnogo integro-differentsialnogo uravneniya s prilozheniem k zadacham teploprovodnosti, Diss. kand. fiz-mat. nauk, Minsk, 1973, 140 pp.

[8] Gabdulkhaev B. G., “Konechnomernye approksimatsii singulyarnykh integralov i pryamye metody resheniya osobykh integralnykh i integrodifferentsialnykh uravnenii”, Itogi nauki i tekhniki. Matem. analiz, 18, Izd-vo AN SSSR, M., 1980, 251–307 | MR

[9] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[10] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda, Izd-vo Kazansk. un-ta, Kazan, 1994, 288 pp. | MR

[11] Samoilova E. N., Metody resheniya singulyarnykh integrodifferentsialnykh uravnenii na razomknutykh konturakh, Diss. kand. fiz.-mat. nauk, Kazan, 2004, 114 pp.

[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Nauka, M., 1959, 684 pp. | MR | Zbl

[13] Samoilova E. N., “Proektsionnye metody resheniya odnogo klassa singulyarnykh integrodifferentsialnykh uravnenii”, Izv. vuzov. Matematika, 2003, no. 7, 48–53 | MR | Zbl

[14] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp. | MR