Modules and ideals of algebras of associative type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 25-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study some properties of associative-type algebras introduced in previous papers of the author. We show that a finite-dimensional algebra of associative type over a field of zero characteristic is homogeneously semisimple, if and only if a certain form defined by the trace form is nonsingular. We prove the total reducedness of modulus over semisimple algebras in a certain subclass of associative-type algebras. We also prove that any left homogeneous ideal of a semisimple algebra of associative type is generated by a homogeneous idempotent.
Mots-clés : algebra of associative type, homogeneous semisimple algebra, modulus, ideal, homogeneous idempotent.
@article{IVM_2008_8_a2,
     author = {N. A. Koreshkov},
     title = {Modules and ideals of algebras of associative type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--34},
     publisher = {mathdoc},
     number = {8},
     year = {2008},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a2/}
}
TY  - JOUR
AU  - N. A. Koreshkov
TI  - Modules and ideals of algebras of associative type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 25
EP  - 34
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a2/
LA  - ru
ID  - IVM_2008_8_a2
ER  - 
%0 Journal Article
%A N. A. Koreshkov
%T Modules and ideals of algebras of associative type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 25-34
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a2/
%G ru
%F IVM_2008_8_a2
N. A. Koreshkov. Modules and ideals of algebras of associative type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 25-34. https://geodesic-test.mathdoc.fr/item/IVM_2008_8_a2/

[1] Bahturin Y., Zaicev M., “Identities of graded algebras”, J. Algebra, 205:1 (1998), 1–12 | DOI | MR | Zbl

[2] Bakhturin Yu. A., Zaitsev M. V., Segal S. K., “$G$-tozhdestva neassotsiativnykh algebr”, Matem. sb., 190:11 (1999), 3–14 | MR | Zbl

[3] Koreshkov N. A., “O nilpotentnosti i razlozhenii algebr assotsiativnogo tipa”, Izv. vuzov. Matematika, 2006, no. 9, 34–42 | MR

[4] Koreshkov N. A., “Ob odnom klasse algebr assotsiativnogo tipa”, Izv. vuzov. Matematika, 2007, no. 3, 38–46 | MR | Zbl

[5] Chebotarev N. G., Vvedenie v teoriyu algebr, OGIZ, Gostekhizdat, M.–L., 1949, 88 pp. | Zbl

[6] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972, 192 pp.