The space BMOλp(D), compact Toeplitz operators with BMOλ1(D) symbols on weighted Bergman spaces, and the Berezin transform
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 76-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_8_a9,
     author = {A. N. Karapetyants},
     title = {The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact {Toeplitz} operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted {Bergman} spaces, and the {Berezin} transform},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--79},
     publisher = {mathdoc},
     number = {8},
     year = {2006},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/}
}
TY  - JOUR
AU  - A. N. Karapetyants
TI  - The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact Toeplitz operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted Bergman spaces, and the Berezin transform
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 76
EP  - 79
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/
LA  - ru
ID  - IVM_2006_8_a9
ER  - 
%0 Journal Article
%A A. N. Karapetyants
%T The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact Toeplitz operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted Bergman spaces, and the Berezin transform
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 76-79
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/
%G ru
%F IVM_2006_8_a9
A. N. Karapetyants. The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact Toeplitz operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted Bergman spaces, and the Berezin transform. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 76-79. https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/

[1] Axler S., Zheng D., “Compact operators via the Berezin transform”, Indiana Univ. Math. J., 47:2 (1998), 387–400 | DOI | MR | Zbl

[2] Axler S., Zheng D., “The Berezin transform on the Toeplitz algebra”, Stud. Math., 127:2 (1998), 113–136 | MR | Zbl

[3] Stroethoff K., Zheng D., “Toeplitz and Hankel operators on Bergman spaces”, Trans. Amer. Math. Soc., 329:2 (1992), 773–794 | DOI | MR | Zbl

[4] Zhu K., “Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains”, J. Oper. Theory, 20:2 (1988), 329–357 | MR | Zbl

[5] Zorboska N., “The Berezin transform and radial operators”, Proc. Amer. Math. Soc., 131:3 (2003), 793–800 | DOI | MR | Zbl

[6] Zorboska N., “Toeplitz operators with $\mathrm{BMO}$ symbols and the Berezin transform”, IJMMS, 46 (2003), 2929–2945 | MR | Zbl

[7] Zhu K., Operator theory in function spaces, Monographs and textbooks in pure and applied mathematics, Marcel Dekker, New York, 254 pp. | MR

[8] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Springer-Verlag, New York, 2000, 286 pp. | MR | Zbl

[9] Zhu K., Spaces of holomorphic functions in the unit ball, Graduate texts in Math., Springer, 2004, 268 pp. | MR

[10] Simonenko I. B., “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii”, DAN SSSR, 158:4 (1964), 790–793 | MR | Zbl

[11] Li H., Lueking D. H., “$\mathrm{BMO}$ on strongly pseudoconvex domains: Hankel operators, duality and $\overline{\partial}$-estimates”, Trans. Amer. Math. Soc., 346:2 (1994), 661–691 | DOI | MR