Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_8_a9, author = {A. N. Karapetyants}, title = {The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact {Toeplitz} operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted {Bergman} spaces, and the {Berezin} transform}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {76--79}, publisher = {mathdoc}, number = {8}, year = {2006}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/} }
TY - JOUR AU - A. N. Karapetyants TI - The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact Toeplitz operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted Bergman spaces, and the Berezin transform JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 76 EP - 79 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/ LA - ru ID - IVM_2006_8_a9 ER -
%0 Journal Article %A A. N. Karapetyants %T The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact Toeplitz operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted Bergman spaces, and the Berezin transform %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 76-79 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/ %G ru %F IVM_2006_8_a9
A. N. Karapetyants. The space $\mathrm{BMO}_\lambda^p(\mathbb D)$, compact Toeplitz operators with $\mathrm{BMO}_\lambda^1(\mathbb D)$ symbols on weighted Bergman spaces, and the Berezin transform. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 76-79. https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a9/
[1] Axler S., Zheng D., “Compact operators via the Berezin transform”, Indiana Univ. Math. J., 47:2 (1998), 387–400 | DOI | MR | Zbl
[2] Axler S., Zheng D., “The Berezin transform on the Toeplitz algebra”, Stud. Math., 127:2 (1998), 113–136 | MR | Zbl
[3] Stroethoff K., Zheng D., “Toeplitz and Hankel operators on Bergman spaces”, Trans. Amer. Math. Soc., 329:2 (1992), 773–794 | DOI | MR | Zbl
[4] Zhu K., “Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains”, J. Oper. Theory, 20:2 (1988), 329–357 | MR | Zbl
[5] Zorboska N., “The Berezin transform and radial operators”, Proc. Amer. Math. Soc., 131:3 (2003), 793–800 | DOI | MR | Zbl
[6] Zorboska N., “Toeplitz operators with $\mathrm{BMO}$ symbols and the Berezin transform”, IJMMS, 46 (2003), 2929–2945 | MR | Zbl
[7] Zhu K., Operator theory in function spaces, Monographs and textbooks in pure and applied mathematics, Marcel Dekker, New York, 254 pp. | MR
[8] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Springer-Verlag, New York, 2000, 286 pp. | MR | Zbl
[9] Zhu K., Spaces of holomorphic functions in the unit ball, Graduate texts in Math., Springer, 2004, 268 pp. | MR
[10] Simonenko I. B., “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii”, DAN SSSR, 158:4 (1964), 790–793 | MR | Zbl
[11] Li H., Lueking D. H., “$\mathrm{BMO}$ on strongly pseudoconvex domains: Hankel operators, duality and $\overline{\partial}$-estimates”, Trans. Amer. Math. Soc., 346:2 (1994), 661–691 | DOI | MR